Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Z F, XIAO X B, HAN J, et al. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065
Citation: ZHANG Z F, XIAO X B, HAN J, et al. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065

Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h

doi: 10.11729/syltlx20230065
  • Received Date: 2023-05-04
  • Accepted Date: 2023-08-02
  • Rev Recd Date: 2023-07-31
  • Available Online: 2023-10-18
  • Publish Date: 2024-02-25
  • The grille located in the lower part of the train body is usually easy to form a grille-cavity structure with the equipment bay’s surface. The problem of flow-acoustic coupling resonance of this structure is more prominent when the train runs at high speed. It is necessary to further analyze the flow-acoustic coupling mechanism of the structure. Therefore, the skirt plate with the grille, which is located in the lower part of the train body and can be simplified to a grilling-cavity structure, is taken as an example. And the Delayed Detached Eddy Simulation (DDES) is used to analyze the grille-cavity structure’s aerodynamic noise generation mechanism, flow field, and sound field. The results show that the shear oscillation at the opening of the grille-cavity structure is more intense when the train is running at 400 km/h, especially near the impact edge of the cavity. From the spatial and frequency domain distribution of the global sound pressure level and the wave number spectrum of the turbulent pressure, it is found that the flow field of the square grille-cavity is always in a transition state of self-excited oscillation and the amplitude of oscillation in the global sound pressure level and wave number domain at different positions is always lower than that of the V-shaped and semi-circular grille-cavity. Considering the effect of the air outlet on the semi-circular grille cavity currently used, it is observed that the evolution of vortex clusters inside the cavity slows down significantly, which directly causes the global sound pressure level near the grille to drop by about 15 dB. It can be considered that the effect of air outlet has a significant effect on the reduction of near-field noise of the skirt plate with the grille.
  • loading
  • [1]
    THOMPSON D. Railway noise and vibration: mechanisms, modeling and means of control[M]. Oxford: Elsevier, 2009. doi: 10.1016/B978-0-08-045147-3.X0023-0
    [2]
    丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35–50. doi: 10.6052/0459-1879-20-225

    DING S S, CHEN D W, LIU J L. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35–50. doi: 10.6052/0459-1879-20-225
    [3]
    袁贤浦, 苗晓丹, 袁天辰, 等. 高速列车受电弓气动噪声分析与弓头降噪研究[J]. 铁道学报, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.00

    YUAN X P, MIAO X D, YUAN T C, et al. Aerodynamic noise analysis of high-speed train pantograph and study on noise reduction of pantograph head[J]. Journal of the China Railway Society, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.00
    [4]
    KURITA T, WAKABAYASHI Y, YAMADA H, et al. Reduction of wayside noise from Shinkansen high-speed trains[J]. Journal of Mechanical Systems for Transportation and Logistics, 2011, 4(1): 1–12. doi: 10.1299/jmtl.4.1
    [5]
    ZHU C L, HEMIDA H, FLYNN D, et al. Numerical simulation of the slipstream and aeroacoustic field around a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 740–756. doi: 10.1177/0954409716641150
    [6]
    SASSA T, SATO T, YATSUI S. Numerical analysis of aerodynamic noise radiation from a high-speed train surface[J]. Journal of Sound and Vibration, 2001, 247(3): 407–416. doi: 10.1006/jsvi.2001.3773
    [7]
    LIANG X F, LIU H F, DONG T Y, et al. Aerodynamic noise characteristics of high-speed train foremost bogie section[J]. Journal of Central South University, 2020, 27(6): 1802–1813. doi: 10.1007/s11771-020-4409-8
    [8]
    史佳伟, 王浩, 圣小珍. 400 km/h速度下转向架气动噪声特性研究[J]. 噪声与振动控制, 2020, 40(3): 125–130. doi: 10.3969/j.issn.1006-1355.2020.03.022

    SHI J W, WANG H, SHENG X Z. Study on aerodynamic noise characteristics of bogies at 400 km/h speed[J]. Noise and Vibration Control, 2020, 40(3): 125–130. doi: 10.3969/j.issn.1006-1355.2020.03.022
    [9]
    SAWAMURA Y, UDA T, KITAGAWA T. Wind tunnel study on measurement and reduction of aerodynamic noise generated from the bogie section of high-speed trains[J]. The Proceedings of the Symposium on Environmental Engineer-ing, 2018, 2018(28): 109. doi: 10.1299/jsmeenv.2018.28.109
    [10]
    KITAGAWA T, NAGAKURA K. Aerodynamic noise generated by shinkansen cars[J]. Journal of Sound and Vibration, 2000, 231(3): 913–924. doi: 10.1006/jsvi.1999.2639
    [11]
    NOH H M, CHOI S, HONG S, et al. Investigation of noise sources in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2014, 228(3): 307–322. doi: 10.1177/0954409712473095
    [12]
    FRÉMION N, VINCENT N, JACOB M, et al. Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train[J]. Journal of Sound and Vibration, 2000, 231(3): 577–593. doi: 10.1006/jsvi.1999.2546
    [13]
    KITAGAWA T, NAGAKURA K, KURITA T. The noise generated from the lower part of shinkansen cars running at high-speed[J]. Journal of Environment and Engineering, 2012, 7(1): 66–75. doi: 10.1299/jee.7.66
    [14]
    SEVER A C, ROCKWELL D. Oscillations of shear flow along a slotted plate: small- and large-scale structures[J]. Journal of Fluid Mechanics, 2005, 530: 213–222. doi: 10.1017/s0022112005003721
    [15]
    CELIK E, SEVER A C, KIWATA T, et al. Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp[J]. Experiments in Fluids, 2007, 42(4): 639–651. doi: 10.1007/s00348-007-0272-8
    [16]
    ZHANG Y C, XU Y G, CHEN X D, et al. Excitation condition for self-sustained oscillation in flow past a louvered cavity[J]. Journal of Mechanics, 2017, 33(4): 535–544. doi: 10.1017/jmech.2017.43
    [17]
    谭玉婷, 伍贻兆, 田书玲. 基于DES的二维和三维空腔流动特性研究[J]. 航空计算技术, 2010, 40(1): 67–70. doi: 10.3969/j.issn.1671-654X.2010.01.017

    TAN Y T, WU Y Z, TIAN S L. Numerical simulation of 2D/3D cavity flows using DES[J]. Aeronautical Computing Technique, 2010, 40(1): 67–70. doi: 10.3969/j.issn.1671-654X.2010.01.017
    [18]
    SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-439
    [19]
    YANG D G, LI J Q, FAN Z L, et al. Aerodynamic characteristics of transonic and supersonic flow over rectangular cavities[J]. Flow, Turbulence and Combustion, 2010, 84(4): 639–652. doi: 10.1007/s10494-010-9246-7
    [20]
    LIU Y, TONG M B. Aeroacoustic investigation of a cavity with and without doors by delayed detached eddy simulation[J]. International Journal of Aeronautical and Space Sciences, 2015, 16(1): 19–27. doi: 10.5139/ijass.2015.16.1.19
    [21]
    邓锷, 杨伟超, 尹荣申, 等. 横风下高速列车驶入隧道时瞬态气动性能研究[J]. 湖南大学学报(自然科学版), 2019, 46(9): 69–78. doi: 10.16339/j.cnki.hdxbzkb.2019.09.008

    DENG E, YANG W C, YIN R S, et al. Study on transient aerodynamic performance of high-speed trains when entering into tunnel under crosswinds[J]. Journal of Hunan University (Natural Sciences), 2019, 46(9): 69–78. doi: 10.16339/j.cnki.hdxbzkb.2019.09.008
    [22]
    瓮哲, 王霄, 刘超, 等. 内埋武器舱动态流动特性及降噪控制方法研究[J]. 空气动力学学报, 2022, 40(3): 169–174. doi: 10.7638/kqdlxxb-2022.0030

    WENG Z, WANG X, LIU C, et al. Unsteady flow characteristics and noise reduction control methods of a geometrically complex weapons bay[J]. Acta Aerodynamica Sinica, 2022, 40(3): 169–174. doi: 10.7638/kqdlxxb-2022.0030
    [23]
    ZHU J Y, HU Z W, THOMPSON D J. Flow simulation and aerodynamic noise prediction for a high-speed train wheelset[J]. International Journal of Aeroacoustics, 2014, 13(7-8): 533–552. doi: 10.1260/1475-472x.13.7-8.533
    [24]
    KAUFMAN L G, MACIULAITIS A, CLARK R L. Mach 0.6 to 3.0 Flow over Rectangular Cavities[R]. Air Force Wright Aeronautical Labs, AFWAL-TR-82-3112, 1983.
    [25]
    杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.

    YANG D G. Study on aeroacoustic characteristics and noise suppression of embedded weapon cabin[D]. Mianyang: China Aerodynamics Research and Development Center, 2010.
    [26]
    PLENTOVICH E B, STALLINGS R L, Jr, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds: static-pressure results[R]. NASA Technical Paper 3358, 1993.
    [27]
    KIM H G, HU Z W, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
    [28]
    宋晓, BREARD C, 孙一峰. 开孔结构流致噪声的数值模拟和机理分析[J]. 应用声学, 2022, 41(3): 335–343. doi: 10.11684/j.issn.1000-310X.2022.03.002

    SONG X, BREARD C, SUN Y F. Numerical simulation and mechanism analysis of flow-induced noise in open-hole structure[J]. Journal of Applied Acoustics, 2022, 41(3): 335–343. doi: 10.11684/j.issn.1000-310X.2022.03.002
    [29]
    ZHANG Y C, XU Y G, ZHANG L L. Aerodynamic characteristic analysis of flow structure around the high-speed train equipment bay[J]. Key Engineering Materials, 2016, 693: 11–16. doi: 10.4028/www.scientific.net/kem.693.11
    [30]
    邓玉清, 张楠. 孔腔脉动压力及其波数—频率谱的大涡模拟研究[J]. 船舶力学, 2017, 21(10): 1199–1209. doi: 10.3969/j.issn.1007-7294.2017.10.003

    DENG Y Q, ZHANG N. Computation of wall pressure fluctuations and wavenumber-frequency spectrum of cavity using large eddy simulation[J]. Journal of Ship Mechanics, 2017, 21(10): 1199–1209. doi: 10.3969/j.issn.1007-7294.2017.10.003
    [31]
    ABRAHAM B M, KEITH W L. Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra[J]. Journal of Fluids Engineering, 1998, 120(1): 29–39. doi: 10.1115/1.2819657
    [32]
    CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
    [33]
    FARABEE T M, CASARELLA M J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10): 2410–2420. doi: 10.1063/1.858179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (607) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return