Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHOU Z T, WANG S Z. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072
Citation: ZHOU Z T, WANG S Z. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072

A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces

doi: 10.11729/syltlx20230072
  • Received Date: 2023-05-15
  • Accepted Date: 2023-08-21
  • Rev Recd Date: 2023-08-06
  • Available Online: 2023-12-18
  • Publish Date: 2024-02-01
  • Ffowcs Williams–Hawkings (FW–H) equation is the extension of the Lighthill’s acoustic analogy equation for sound prediction with moving boundaries. However, the spurious sound often arises from vortex structures crossing through permeable FW–H surfaces. This work aims to approximate the contribution of the vortex structures to far-field sound using the Lighthill stress tensor flux and subtract the resulting spurious sound. Based on the frequency-domain Lighthill stress tensor quadrupole correction model, a quadrupole correction model is proposed to account for the effect of a moving integral surface on the spurious sound. Based on the frozen flow assumption and far-field approximation of the FW–H equation’s Green’s function, the proposed model incorporates the FW–H surface’s velocity into the integrand of the quadru-pole correction model by solving an algebraic equation of the quadrupole volume integral term. The proposed model is validated by the far-field sound prediction of flows over a circular cylinder and a convecting vortex.
  • loading
  • [1]
    JI J C, WANG C, WANG L A, et al. A recursive approach for aeroacoustic phased array measurements in wind tunnels[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 417–427. doi: 10.1121/10.0005543
    [2]
    LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [3]
    TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
    [4]
    SUN X F, JIANG Y S, LIANG A, et al. An immersed boundary computational model for acoustic scattering problems with complex geometries[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3190–3199. doi: 10.1121/1.4757747
    [5]
    LI H, LUO Y, ZHANG S H. Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet[J]. Journal of Scientific Computing, 2021, 87(1): 1–39. doi: 10.1007/s10915-020-01407-6
    [6]
    FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
    [7]
    TAY W B, LU Z B, RAMESH S S, et al. Numerical simulations of serrated propellers to reduce noise[M]//PANDA D K. Supercomputing Frontiers. Cham: Springer International Publishing, 2020: 87-103. doi: 10.1007/978-3-030-48842-0_6
    [8]
    SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part I: methods and tests[J]. International Journal of Aeroacoustics, 2005, 4(3): 213–245. doi: 10.1260/1475472054771376
    [9]
    RICHARDS S K, CHEN X X, HUANG X, et al. Computation of fan noise radiation through an engine exhaust geometry with flow[J]. International Journal of Aeroacoustics, 2007, 6(3): 223–241. doi: 10.1260/147547207782419534
    [10]
    ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12): 4219–4233. doi: 10.2514/1.j055853
    [11]
    GAO J H, LI X D. Numerical simulation of the noise from a subsonic jet in static and flight conditions[C]//Proc of the Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. 2019: AIAA2019-2666. doi: 10.2514/6.2019-2666
    [12]
    ZHANG P K, LIU Y, LI Z Y, et al. Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings[J]. Aerospace Science and Technology, 2020, 107: 106308. doi: 10.1016/j.ast.2020.106308
    [13]
    LOCKARD D P. An efficient, two-dimensional implementa-tion of the Ffowcs Williams and Hawkings equation[J]. Journal of Sound and Vibration, 2000, 229(4): 897–911. doi: 10.1006/jsvi.1999.2522
    [14]
    BOZORGI A, SIOZOS-ROUSOULIS L, AHMAD NOURBA-KHSH S, et al. A two-dimensional solution of the FW-H equation for rectilinear motion of sources[J]. Journal of Sound and Vibration, 2017, 388: 216–229. doi: 10.1016/j.jsv.2016.10.035
    [15]
    SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part II: applications[J]. International Journal of Aeroacoustics, 2005, 4(3): 247–266. doi: 10.1260/1475472054771385
    [16]
    ZHONG S Y, ZHANG X. A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves[J]. Journal of Fluid Mechanics, 2017, 820: 424–450. doi: 10.1017/jfm.2017.219
    [17]
    ZHONG S Y, ZHANG X. A generalized sound extrapolation method for turbulent flows[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2210): 20170614. doi: 10.1098/rspa.2017.0614
    [18]
    ZHONG S Y, ZHANG X. On the frequency domain formulation of the generalized sound extrapolation method[J]. The Journal of the Acoustical Society of America, 2018, 144(1): 24–31. doi: 10.1121/1.5044515
    [19]
    WANG M, LELE S K, MOIN P. Computation of quadrupole noise using acoustic analogy[J]. AIAA Journal, 1996, 34(11): 2247–2254. doi: 10.2514/3.13387
    [20]
    NITZKORSKI Z, MAHESH K. A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations[J]. Physics of Fluids, 2014, 26(11): 115101. doi: 10.1063/1.4900876
    [21]
    LOCKARD D, CASPER J. Permeable surface corrections for Ffowcs Williams and Hawkings integrals[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference). 2005. doi: 10.2514/6.2005-2995
    [22]
    ZHOU Z T, WANG H P, WANG S Z, et al. Lighthill stress flux model for Ffowcs Williams–Hawkings integrals in frequency domain[J]. AIAA Journal, 2021, 59(11): 4809–4814. doi: 10.2514/1.j060070
    [23]
    ZHOU Z T, WANG H P, WANG S Z. Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals[J]. Theoretical and Applied Mechanics Letters, 2021, 11(4): 100259. doi: 10.1016/j.taml.2021.100259
    [24]
    ZHOU Z T, ZANG Z Y, WANG H P, et al. Far-field approximations to the derivatives of Green’s function for the Ffowcs Williams and Hawkings equation[J]. Advances in Aerodynamics, 2022, 4(1): 1–23. doi: 10.1186/s42774-022-00109-x
    [25]
    NAJAFI-YAZDI A, BRÈS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2011, 467(2125): 144–165. doi: 10.1098/rspa.2010.0172
    [26]
    IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole corrections for the permeable-surface Ffowcs Williams–Hawkings equation[J]. AIAA Journal, 2017, 55(7): 2307–2320. doi: 10.2514/1.j055328
    [27]
    IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole effects in the Ffowcs Williams-Hawkings equation using permeable control surface[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2069
    [28]
    ZHOU Z T, WANG H P, ZANG Z Y, et al. A frequency-domain formulation for predicting multi-frequency noise generated by flows with periodically moving boundaries[J]. Journal of Theoretical and Computational Acoustics, 2023, 31(1): 2350001. doi: 10.1142/s2591728523500019
    [29]
    BRENTNER K S. Numerical algorithms for acoustic integrals with examples for rotor noise prediction[J]. AIAA Journal, 1997, 35(4): 625–630. doi: 10.2514/3.13558
    [30]
    INOUE O, HATAKEYAMA N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285–314. doi: 10.1017/s0022112002002124
    [31]
    GLOERFELT X, PÉROT F, BAILLY C, et al. Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers[J]. Journal of Sound and Vibration, 2005, 287(1-2): 129–151. doi: 10.1016/j.jsv.2004.10.047
    [32]
    周志腾, 王洪平, 王士召, 等. 基于关联速度的FW-H积分四极子声源修正模型[J]. 空气动力学学报, 2020, 38(6): 1129–1135. doi: 10.7638/kqdlxxb-2020.0141

    ZHOU Z T, WANG H P, WANG S Z, et al. Quadrupole source term corrections based on correlation functions for Ffowcs Williams and Hawkings integrals[J]. Acta Aerodyna-mica Sinica, 2020, 38(6): 1129–1135. doi: 10.7638/kqdlxxb-2020.0141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (622) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return