Turn off MathJax
Article Contents
FENG H, JIN T, WU K. Numerical study on turbulent combustion in high Mach number scram-jet engine considering thermal non-equilibrium effect[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230158
Citation: FENG H, JIN T, WU K. Numerical study on turbulent combustion in high Mach number scram-jet engine considering thermal non-equilibrium effect[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230158

Numerical study on turbulent combustion in high Mach number scram-jet engine considering thermal non-equilibrium effect

doi: 10.11729/syltlx20230158
  • Received Date: 2023-11-22
  • Accepted Date: 2024-02-26
  • Rev Recd Date: 2024-02-04
  • Available Online: 2024-04-30
  • During hypersonic flight, the temperature inside the boundary layer rapidly increases with the increase of Mach number, leading to the excitation of molecular vibration and electron energy. Gaseous molecules undergo dissociation or even ionization, making the assumption of complete gas calorimetry invalid, and thereby affecting the characteristics of the scram-jet engine. The turbulent combustion in the scram-jet engine under the Ma 12 flight condition is numerically studied via a thermodynamic equilibrium model and the Park's dual temperature non-equilibrium model where the high-temperature thermal non-equilibrium effects are considered. The results indicate that compared to the equilibrium case, the non-equilibrium effect causes the position of the shock wave trains to shift forward, and the increase of the peak pressure between shock waves. This is more significant for the frozen flow field. The temperature field Ttr in the non-equilibrium case is not significantly different from that of the equilibrium case, and the thermodynamic non-equilibrium effect slightly increases Ttr. The combustion efficiency at the outlet section is lower in the non-equilibrium case, and the thermodynamic non-equilibrium effect slightly weakens the intensity of the reactions.
  • loading
  • [1]
    陈贤亮, 符松. 热化学非平衡高超声速平板边界层线性稳定性分析[J]. 空气动力学学报, 2020, 38(2): 316–325. doi: 10.7638/koqdIlxxl-2019.0156

    CHEN X L, FU S. Linear stability analysis of hypersonic boundary layer on a flat-plate with thermal-chemical non-equilibrium effects[J]. Acta Aerodynamica Sinica, 2020, 38(2): 316–325. doi: 10.7638/koqdIlxxl-2019.0156
    [2]
    袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理, 2022, 7(4): 10–18. doi: 10.19527/j.cnki.2096-1642.0927

    YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases, 2022, 7(4): 10–18. doi: 10.19527/j.cnki.2096-1642.0927
    [3]
    傅杨奥骁, 董维中, 丁明松, 等. 高焓电弧风洞试验热化学非平衡流场数值模拟[J]. 实验流体力学, 2019, 33(3): 1–12. doi: 10.11729/syltlx20180138

    FU-Y A X, DONG W Z, DING M S, et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1–12. doi: 10.11729/syltlx20180138
    [4]
    岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263–288. doi: 10.6052/0459-1879-21-547

    YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263–288. doi: 10.6052/0459-1879-21-547
    [5]
    LONGO J M A, HANNEMANN K, HANNEMANN V. The challenge of modeling high speed flows[C]//Proceedings of the 6th EUROSIM Congress on Modelling and Simulation. 2007.
    [6]
    ANNA A. Numerical modeling of surface chemistry processes for hypersonic entry environments[D]. Ann Arbor, MI, US: The University of Michigan, 2013.
    [7]
    熊文韬. 高温非平衡效应下双楔绕流中激波干扰研究[D]. 合肥: 中国科学技术大学, 2017.

    XIONG W T. On shock-shock interaction in double-wedge flow with high temperature non-equilibrium effects[D]. Hefei: University of Science and Technology of China, 2017.
    [8]
    BRICALLI M G, BROWN L, BOYCE R R, et al. Scramjet performance with nonuniform flow and swept nozzles[J]. AIAA Journal, 2018, 56(10): 3988–4003. doi: 10.2514/1.j056963
    [9]
    CASSEAU V, ESPINOZA D E R, SCANLON T J, et al. A two-temperature open-source CFD model for hypersonic reacting flows, part two: multi-dimensional analysis[J]. Aerospace, 2016, 3(4): 45. doi: 10.3390/aerospace3040045
    [10]
    CASSEAU V. An open-source CFD solver for planetary entry[D]. Glasgow, United Kingdom, University of Strathclyde, 2017. doi: 10.48730/fc4y-6m27.
    [11]
    LANDAU L D, TELLER E. On the theory of sound dispersion[J]. Physikalische Zeitschrift der Sowjetunion, 1936, 10(34): 1. doi: 10.1016/B978-0-08-010586-4.50027-4
    [12]
    JOHNSON R D Ⅲ. NIST Computational chemistry comparison and benchmark database[R]. NIST Standard Reference Database Number 101, 2016.
    [13]
    MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, heat and mass transfer, 2003, 4(1): 625–632.
    [14]
    CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. doi: 10.1002/kin.20036
    [15]
    AO Y, WU K, LU H B, et al. Combustion dynamics of high Mach number scramjet under different inflow thermal nonequilibrium conditions[J]. Acta Astronautica, 2023, 208: 281–295. doi: 10.1016/j.actaastro.2023.04.020
    [16]
    BRICALLI M G, BROWN L M, BOYCE R R. Numerical investigation into the combustion behavior of an inlet-fueled thermal-compression-like scramjet[J]. AIAA Journal, 2015, 53(7): 1740–1760. doi: 10.2514/1.j053513
    [17]
    白贺之, 陈兵, 徐旭. 基于PNS方程的高超声速热化学非平衡喷管流动数值模拟[J]. 战术导弹技术, 2018(4): 25–31. doi: 10.16358/j.issn.1009-1300.2018.7.197

    BAI H Z, CHEN B, XU X. Numerical simulation of hypersonic nozzle flow in thermochemical nonequilibrium based on parabolized Navier–Stokes equation[J]. Tactical Missile Technology, 2018(4): 25–31. doi: 10.16358/j.issn.1009-1300.2018.7.197
    [18]
    VATANSEVER D, ÇELİK B. An open-source hypersonic solver for non-equilibrium flows[J]. Journal of Aeronautics and Space Technologies (Havacilik ve Uzay Teknolojileri Dergisi), 2021, 14(1): 35–52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (30) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return