高速飞行器液膜冷却的自适应分辨率光滑粒子法模拟研究

Numerical study of liquid film cooling using smoothed particle hydrodynamics with adaptive spatial resolution

  • 摘要: 近年来,高速飞行器面临着越来越严峻的热环境和复杂的力学环境,液膜冷却凭借其独特的相变传热特性和流动控制能力,在飞行器外流场热/力耦合控制方面展现出重要应用价值。然而,针对该问题的研究还较为匮乏,当前实验研究存在诸多限制,传统数值模拟方法又难以同时处理大密度比气液交界面的复杂变形、液体蒸发/沸腾、流固耦合等问题。因此,本文发展了一种结合自适应分辨率算法和多相流传热传质算法的光滑粒子法。通过泊肃叶流和开尔文−亥姆霍兹不稳定性2个典型算例,对自适应分辨率光滑粒子法进行了对比验证,并进一步分析了影响液膜形成的关键因素。

     

    Abstract: Hypersonic vehicles demand advanced thermal protection due to extreme Mach numbers, prolonged flight, and high loads. Liquid film cooling, with advantages like evaporative phase change and high specific heat capacity, shows great potential for active thermal protection in hypersonic vehicles. However, related research remains insufficient, with experimental studies facing multiple limitations while conventional numerical methods cannot simultaneously handle complex issues such as large density ratio gas-liquid interfaces, liquid evaporation/boiling, and fluid-structure interactions. This paper develops a smoothed particle method combining the adaptive resolution algorithm with multiphase heat and the mass transfer algorithm. The adaptive resolution SPH method is validated through two typical cases of Poiseuille flow and Kelvin-Helmholtz instability, followed by analysis of key factors affecting the liquid film cooling process.

     

/

返回文章
返回