Yang Furong, Chen Li, Yan Bo, Su Tie, Bao Weiyi, Chen Shuang. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86. DOI: 10.11729/syltlx20170103
Citation: Yang Furong, Chen Li, Yan Bo, Su Tie, Bao Weiyi, Chen Shuang. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86. DOI: 10.11729/syltlx20170103

Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique

More Information
  • Received Date: August 13, 2017
  • Revised Date: October 29, 2017
  • The interferometric Rayleigh scattering diagnostic technique for the time-resolved velocity measurement of the transonic wind tunnel is studied. The velocity-measurement apparatus, consisted of a CW laser, a high resolution Fabry-Pérot interferometer and a high-speed EMCCD camera, is designed. Rayleigh scattering light is produced as the flow irradiated by the laser. Then the light is collected and analyzed accurately by the Fabry-Pérot interferometer and the camera. Theoretically, this systematic velocity-measurement accuracy can reach 1.23m/s. Measurement accuracy is then evaluated by comparing with hot wire anemometry results. Moreover, the distributions of velocity and turbulence intensity in a supersonic flow at Mach number 3.0 are obtained quantitatively. The sampling rate in this measurement reached about 4 kHz.
  • [1]
    Mielke A F, Seasholtz R G, Elam K A. Time-average measurement of velocity, density, temperature, and turbulence velocity fluctuations using Rayleigh and Mie scattering[J]. Exp Fluids, 2005, 39(2):441-454. DOI: 10.1007/s00348-005-0990-8
    [2]
    Mielke A F, Elam K A. Multiproperty measurements at high sampling rates using Rayleigh scattering[J]. AIAA Journal, 2009, 47(4):850-862. DOI: 10.2514/1.37369
    [3]
    朱博, 汤更生.声学风洞流场低湍流度及频谱测量研究[J].实验流体力学, 2015, 29(4):58-64. http://www.syltlx.com/CN/abstract/abstract10860.shtml

    Zhu B, Tang G S. Low turbulence intensity and spectrum measurement research in aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):58-64. http://www.syltlx.com/CN/abstract/abstract10860.shtml
    [4]
    Dorothea I, Hollnagel M, Paul E. Laser Doppler Velocimetry (LDV) and 3D Phase-Contrast Magnetic Resonance Angiography (PC-MRA) velocity measurements:Validation in an anatomically accurate cerebral artery aneurysm model with steady flow[J]. J Magn Reson Imaging, 2007, 26(6):1493-1505. DOI: 10.1002/(ISSN)1522-2586
    [5]
    Yeh Y, Cummins H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J]. Appl Phys Lett, 1964, 4(10):176-178. DOI: 10.1063/1.1753925
    [6]
    Kaffelabc A, Moureha J, Harionbc J L. TR-PIV measurements and POD analysis of the plane wall jet subjected to lateral perturbation[J]. Exp Fluids, 2016, 77(4):71-78. http://www.sciencedirect.com/science/article/pii/S0894177716300772
    [7]
    Lock J A, Seasholtz R G, John W T. Rayleigh-brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow jet[J]. Appl Opt, 1992, 31(15):2839-2848. DOI: 10.1364/AO.31.002839
    [8]
    Seasholtz R G, Zupanc F J, Schneider S J. Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies[J]. J Propulsion and Power, 1992, 8(5):935-942. DOI: 10.2514/3.23575
    [9]
    Seasholtz R G, Buggele A E, Reeder M F. Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer[J]. Optics and Lasers in Engineering, 1997, 27(6):543-570. DOI: 10.1016/S0143-8166(96)00063-2
    [10]
    Seasholtz R G, Greer L C. Rayleigh scattering diagnostic for measurement of temperature and velocity in harsh environments[R]. AIAA-1998-0206, 1998.
    [11]
    Mielke A F, Elam K A. Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering[J]. Exp Fluids, 2009, 47(4):667-673. DOI: 10.1007/s00348-009-0708-4
    [12]
    Seasholtz R G, Panda J, Elam K A. Rayleigh scattering diagnostic for dynamic measurement of velocity fluctuations in high speed jets[R]. AIAA-2001-0847, 2001.
    [13]
    Seasholtz R G, Panda J, Elam K A. Rayleigh scattering diagnostic for measurement of velocity and density fluctuation spectra[R]. AIAA-2002-0827, 2002.
    [14]
    Mielke A F, Elam K A. Rayleigh scattering diagnostic for measurement of temperature, velocity, and density fluctuation spectra[R]. AIAA-2006-837, 2006.
    [15]
    陈力, 杨富荣, 苏铁, 等.基于法布里-珀罗干涉仪的瑞利散射测速技术研究[J].光子学报, 2015, 44(1):0112004-1-0112004-4. http://d.old.wanfangdata.com.cn/Periodical/gzxb201501032

    Chen L, Yang F R, Su T, et al. Interferometric Rayleigh scattering velocimetry using a Fabry-Perot interferometer[J]. Acta Photonic Sinica, 2015, 44(1):0112004-1-0112004-4. http://d.old.wanfangdata.com.cn/Periodical/gzxb201501032
    [16]
    Mielke A F, Clem M M, Elam K A. Rayleigh scattering measurements using a tunable liquid crystal Fabry-Perot interferometer[R]. AIAA-2010-4350, 2010. http://www.researchgate.net/publication/268558358_Rayleigh_Scattering_Measurements_Using_a_Tunable_Liquid_Crystal_Fabry-Perot_Interferometer
    [17]
    Amy F F, Michelle M C, Kristie A E. Improvement in Rayleigh scattering measurement accuracy[R]. AIAA-2012-1060, 2012. DOI: 10.2514/6.2012-1060
    [18]
    郭永康.光学[M].北京:高等教育出版社, 2005.

    Guo Y K. Optics[M]. Beijing:Higher Education Press, 2005.
    [19]
    盛森芝.热线热膜流速计[M].北京:中国科学技术出版社, 2003.

    Sheng S Z. Hot wire/film anemometer[M]. Beijing:Science and technology of China press, 2003.
  • Cited by

    Periodical cited type(9)

    1. 殷一民,陈爱国,李猛,陈力,陈爽. 高超声速低密度风洞FLEET测速实验研究. 力学学报. 2025(02): 361-367 .
    2. 李猛,赵慧勇,袁强,陈力,母金河. 马赫数3超声速来流湍流度对平板模型边界层转捩影响的试验研究. 实验流体力学. 2024(06): 56-64 . 本站查看
    3. 胡臻,宋子豪,王巍添,朱宁,超星. 红外分子标记测速法. 实验流体力学. 2023(05): 41-48 . 本站查看
    4. 杨文斌,陈力,闫博,王朝宗,周江宁,陈爽,母金河,王建新,邱荣. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量. 实验流体力学. 2022(04): 94-102 . 本站查看
    5. 王岩,宋放. 基于PMAC的超声速风洞控制系统软件开发设计. 计算机测量与控制. 2021(02): 122-125+131 .
    6. 齐新华,陈力,闫博,母金河,陈爽,周江宁. 基于自发辐射光谱的超声速流场测速技术. 光谱学与光谱分析. 2021(06): 1745-1750 .
    7. 胡代平. 基于天然气管网的可压缩流模型与应用. 系统管理学报. 2021(06): 1215-1221 .
    8. 蒲泓宇,李大海,罗鹏,章辰. 环路剪切干涉术测量附面层密度场. 光电工程. 2020(04): 64-73 .
    9. 杜钰锋,林俊,王勋年,熊能. 变热线过热比可压缩流湍流度测量方法优化. 航空学报. 2019(12): 55-63 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (277) PDF downloads (22) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close