Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
TANG J P, HE J, WANG X, et al. A concise method of determining critical flutter wind speeds for small damping modes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 101-105 doi: 10.11729/syltlx20210071
Citation: TANG J P, HE J, WANG X, et al. A concise method of determining critical flutter wind speeds for small damping modes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 101-105 doi: 10.11729/syltlx20210071

A concise method of determining critical flutter wind speeds for small damping modes

doi: 10.11729/syltlx20210071
  • Received Date: 2021-07-09
  • Accepted Date: 2021-08-31
  • Rev Recd Date: 2021-08-28
  • Available Online: 2022-03-18
  • Publish Date: 2023-12-25
  • In low speed flutter tests, flutter models with small damping modes start continuous vibration usually at low speeds without obvious flutter divergence. Therefore, it's of some uncertainty on determing the critical flutter wind speeds by visual inspection or by “damping method (DM)” of modal parameter identification. Considering the similarity between the vibration phenomenon of a small damping modal flutter test and that of a fighter buffet test, a technique named “amplitude turning point method (ATPM)” similarly to that used in identifying buffet boundaries is proposed to determine the critical flutter wind speeds. The method is based on RMS of vibration amplitudes, the curves of normalized vibration RMS changing with wind speeds are drawn, and critical flutter wind speeds are determined according to the first turning points of curves. In a small damping modal flutter test, the method was applied in the test data processing of the engine hangers with variable parameters. Comparing the ATPM results with the DM results and the numerical results, the following conclusions are made: the results of three methods are in agreement, the ATPM results are more similar to the numerical results than the DM results, and the ATPM is concise and reliable, with good stability and applicability.
  • loading
  • [1]
    俱利锋, 梁坤鹏, 梁海州, 等. 颤振边界预测技术在颤振试飞中的应用研究[J]. 飞行力学, 2010, 28(5): 79–83. doi: 10.13645/j.cnki.f.d.2010.05.015

    JU L F, LIANG K P, LIANG H Z, et al. Application to flut-ter boundary prediction in flight test[J]. Flight Dynamics, 2010, 28(5): 79–83. doi: 10.13645/j.cnki.f.d.2010.05.015
    [2]
    谭冬梅, 姚三, 瞿伟廉. 振动模态的参数识别综述[J]. 华中科技大学学报(城市科学版), 2002, 19(3): 73–78.

    TAN D M, YAO S, QU W L. State of modal parameter identification[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2002, 19(3): 73–78.
    [3]
    王卫华. 模态参数识别方法及应用研究[D]. 长沙: 国防科学技术大学, 2007.

    WANG W H. Investigation on the modal parameters identifi-cation method and its application[D]. Changsha: National University of Defense Technology, 2007.
    [4]
    陈为真. 大型结构振动信号处理与模态参数识别研究[D]. 武汉: 华中科技大学, 2010.

    CHEN W Z. Large structural systems with vibration signal processing and modal parameter identification research[D]. Wuhan: Huazhong University of Science and Technology, 2010.
    [5]
    张伟伟, 于俊杰, 全景阁, 等. 一种基于亚临界响应的颤振边界预测新方法[J]. 航空工程进展, 2012, 3(4): 390–396. doi: 10.16615/j.cnki.1674-8190.2012.04.007

    ZHANG W W, YU J J, QUAN J G, et al. A new flutter prediction method based on a structural response at sub-critical speed[J]. Advances in Aeronautical Science and Engineering, 2012, 3(4): 390–396. doi: 10.16615/j.cnki.1674-8190.2012.04.007
    [6]
    伍波, 王骑, 李志国, 等. 颤振临界风速计算值与试验值的一致性[J]. 西南交通大学学报, 2018, 53(3): 517–524. doi: 10.3969/j.issn.0258-2724.2018.03.012

    WU B, WANG Q, LI Z G, et al. Consistency between calculated and tested values of critical flutter speed of flat box girder[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 517–524. doi: 10.3969/j.issn.0258-2724.2018.03.012
    [7]
    许福友, 陈艾荣, 张哲, 等. 确定桥梁模型颤振临界风速的实用方法[J]. 振动与冲击, 2008, 27(12): 97–100, 111, 182. doi: 10.13465/j.cnki.jvs.2008.12.018

    XU F Y, CHEN A R, ZHANG Z, et al. Practical technique for determining critical flutter wind speed of bridge model[J]. Journal of Vibration and Shock, 2008, 27(12): 97–100, 111, 182. doi: 10.13465/j.cnki.jvs.2008.12.018
    [8]
    聂建华, 司伟. 一种基于振动信号处理的颤振预报方案研究[J]. 工业仪表与自动化装置, 2009(4): 57–59, 71. doi: 10.3969/j.issn.1000-0682.2009.04.016

    NIE J H, SI W. The method for prediction of chatter based onthe vibration signal processing[J]. Industrial Instrumentation& Automation, 2009(4): 57–59, 71. doi: 10.3969/j.issn.1000-0682.2009.04.016
    [9]
    盖相宇. 大跨径悬索桥软颤振临界风速确定方法[D]. 西安: 长安大学, 2019.

    GAI X Y. Method for determining the critical wind speed of long-span suspension bridges under post flutter[D]. Xi'an: Chang'an University, 2019.
    [10]
    牟让科, 杨永年. 飞机抖振问题研究进展[J]. 应用力学学报, 2001, 18(S1): 142–150.

    MU R K, YANG Y N. Advances of studies for the buffet pro-blem of aircraft[J]. Chinese Journal of Applied Mechanics, 2001, 18(S1): 142–150.
    [11]
    陈德成, 姜节胜. 随机减量技术的方法与理论[J]. 振动与冲击, 1984, 3(4): 31–40. doi: 10.13465/j.cnki.jvs.1984.04.004

    CHEN D C, JIANG J S. Method and theory of random decrement technique[J]. Journal of Vibration and Shock, 1984, 3(4): 31–40. doi: 10.13465/j.cnki.jvs.1984.04.004
    [12]
    聂雪媛, 丁桦. 基于随机减量技术的模态参数识别方法探讨[J]. 机械设计, 2012, 29(8): 1–5. doi: 10.13841/j.cnki.jxsj.2012.08.015

    NIE X Y, DING H. Discussion on modal parameter identifi-cation method based on random decrement technique[J]. Journal of Machine Design, 2012, 29(8): 1–5. doi: 10.13841/j.cnki.jxsj.2012.08.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (405) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return