Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
WANG Z, WANG Y Y, LIU X C. Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077
Citation: WANG Z, WANG Y Y, LIU X C. Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 1-14 doi: 10.11729/syltlx20210077

Experimental study on high frame rate characteristics of dynamic flow field of jet in crossflow

doi: 10.11729/syltlx20210077
  • Received Date: 2021-08-02
  • Accepted Date: 2021-11-09
  • Rev Recd Date: 2021-09-29
  • Available Online: 2022-04-29
  • Publish Date: 2023-12-25
  • Despite the decisive influence of various vortex structures of a jet in crossflow on the jet trajectory and scalar mixing, there are few studies related to the high-frequency dynamic characteristics of shear-layer vortexes during transportation. This paper focuses on the high-frequency flow field characteristic, the scalar concentration distribution and the formation and collapse process of the turbulent microstructure of the jet in crossflow with different nozzle diameters and velocity ratios using 40 kHz Particle Image Velocimetry (PIV) and 20 kHz Acetone Planar Laser Induced Fluorescence (Acetone PLIF). The experimental measurements of the velocity and scalar field show that: increasing the velocity ratio promotes the expansion of the circulation zone behind the jet; in the near field of the jet trajectory, power law fitted velocity distribution and shear-layer vortex trajectory shows an exponentially decrease of the jet velocity, the shear-layer vortex strength and vortex motion frequency also show a downward trend, with the frequency of the shear-layer vortex on the windward side slightly lower than that on the leeward side; as the jet velocity increases, the frequency of the shear-layer vortex increases gradually, but the Strouhal number decreases.
  • loading
  • [1]
    YUEN C H N, MARTINEZ-BOTAS R F. Film cooling characteristics of a single round hole at various streamwise angles in a crossflow: Part I effectiveness[J]. International Journal of Heat and Mass Transfer, 2003, 46(2): 221–235. doi: 10.1016/S0017-9310(02)00274-0
    [2]
    吴里银, 张扣立, 李晨阳, 等. 超声速气流中液体横向射流空间振荡分布建模[J]. 实验流体力学, 2018, 32(4): 20–30. doi: 10.11729/syltlx20170172

    WU L Y, ZHANG K L, LI C Y, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20–30. doi: 10.11729/syltlx20170172
    [3]
    陈亮, 乐嘉陵, 宋文艳, 等. 超声速冷态流场液体射流雾化实验研究[J]. 实验流体力学, 2011, 25(2): 29–34, 40. doi: 10.3969/j.issn.1672-9897.2011.02.006

    CHEN L, LE J L, SONG W Y, et al. Experimental investigation of liquid jets atomization in supersonic cold crossflow[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 29–34, 40. doi: 10.3969/j.issn.1672-9897.2011.02.006
    [4]
    KARAGOZIAN A R. The jet in crossflow[J]. Physics of Fluids, 2014, 26(10): 101303. doi: 10.1063/1.4895900
    [5]
    FRIC T F, ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics, 1994, 279: 1–47. doi: 10.1017/s0022112094003800
    [6]
    KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy and Combustion Science, 2010, 36(5): 531–553. doi: 10.1016/j.pecs.2010.01.001
    [7]
    CAMUSSI R, GUJ G, STELLA A. Experimental study of a jet in a crossflow at very low Reynolds number[J]. Journal of Fluid Mechanics, 2002, 454: 113–144. doi: 10.1017/s0022112001007005
    [8]
    GUTMARK E J, IBRAHIM I M, MURUGAPPAN S. Dynamics of single and twin circular jets in cross flow[J]. Experiments in Fluids, 2011, 50(3): 653–663. doi: 10.1007/s00348-010-0965-2
    [9]
    HAVEN B A, KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics, 1997, 352: 27–64. doi: 10.1017/s0022112097007271
    [10]
    SALEWSKI M, STANKOVIC D, FUCHS L, et al. Coherent structures in circular and non-circular jets in crossflow[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-907
    [11]
    HARRIS E W. Structure, mixing, and dynamics of controlled single and coaxial jets in crossflow[D]. Los Angeles: University of California, 2020.
    [12]
    CAMBONIE T, GAUTIER N, AIDER J L. Experimental study of counter-rotating vortex pair trajectories induced by a round jet in cross-flow at low velocity ratios[J]. Experi-ments in Fluids, 2013, 54(3): 1475. doi: 10.1007/s00348-013-1475-9
    [13]
    KEFFER J F, BAINES W D. The round turbulent jet in a cross-wind[J]. Journal of Fluid Mechanics, 1963, 15(4): 481–496. doi: 10.1017/s0022112063000409
    [14]
    BROADWELL J E, BREIDENTHAL R E. Structure and mixing of a transverse jet in incompressible flow[J]. Journal of Fluid Mechanics, 1984, 148: 405–412. doi: 10.1017/s0022112084002408
    [15]
    HASSELBRINK E F, MUNGAL M G. Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets[J]. Journal of Fluid Mechanics, 2001, 443: 1–25. doi: 10.1017/S0022112001005146
    [16]
    SMITH S H, MUNGAL M G. Mixing, structure and scaling of the jet in crossflow[J]. Journal of Fluid Mechanics, 1998, 357: 83–122. doi: 10.1017/s0022112097007891
    [17]
    MARGASON R J. Fifty years of jet in cross flow research[C]//Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Crossflow. 1993: 1–141.
    [18]
    KAMOTANI Y, GREBER I. Experiments on a turbulent jet in a cross flow[J]. AIAA Journal, 1972, 10(11): 1425–1429. doi: 10.2514/3.50386
    [19]
    KELSO R M, LIM T T, PERRY A E. An experimental study of round jets in cross-flow[J]. Journal of Fluid Mechanics, 1996, 306: 111–144. doi: 10.1017/s0022112096001255
    [20]
    LIM T T, NEW T H, LUO S C. On the development of large-scale structures of a jet normal to a cross flow[J]. Physics of Fluids, 2001, 13(3): 770–775. doi: 10.1063/1.1347960
    [21]
    HUANG R F, LAN J. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet[J]. Physics of Fluids, 2005, 17(3): 034103. doi: 10.1063/1.1852575
    [22]
    GETSINGER D. Shear layer instabilities and mixing in variable density transverse jet flows[D]. Los Angeles: University of California, 2012.
    [23]
    刘超群. Liutex–涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413–431, 478. doi: 10.7638/kqdlxxb-2020.0015

    LIU C Q. Liutex–third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413–431, 478. doi: 10.7638/kqdlxxb-2020.0015
    [24]
    LIU C Q, GAO Y S, DONG X R, et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics, 2019, 31(2): 205–223. doi: 10.1007/s42241-019-0022-4
    [25]
    WANG Y Q, GAO Y S, LIU C Q. Galilean invariance of Rortex[J]. Physics of Fluids, 2018, 30(11): 111701. doi: 10.1063/1.5058939
    [26]
    GEVORKYAN L. Structure and mixing characterization of variable density transverse jet flows[D]. Los Angeles: University of California, 2015.
    [27]
    YUAN L L, STREET R L, FERZIGER J H. Large-eddy simulations of a round jet in crossflow[J]. Journal of Fluid Mechanics, 1999, 379: 71–104. doi: 10.1017/s0022112098003346
    [28]
    ALTAHARWAH Y A, HUANG R F, HSU C M. Flow and mixing characteristics of a forward-inclined stack-issued jet in crossflow[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108549. doi: 10.1016/j.ijheatfluidflow.2020.108549
    [29]
    DAI C, JIA L, ZHANG J, et al. On the flow structure of an inclined jet in crossflow at low velocity ratios[J]. International Journal of Heat and Fluid Flow, 2016, 58: 11–18. doi: 10.1016/j.ijheatfluidflow.2015.12.001
    [30]
    ZHAO M J, LI Q L, YE T H. Investigation of an optimal pulsed jet mixing and combustion in supersonic crossflow[J]. Combustion and Flame, 2021, 227: 186–201. doi: 10.1016/j.combustflame.2021.01.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (559) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return