Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
ZHU H J,WANG Q,MEI X H,et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):49-73. doi: 10.11729/syltlx20210110
Citation: ZHU H J,WANG Q,MEI X H,et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):49-73. doi: 10.11729/syltlx20210110

A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems

doi: 10.11729/syltlx20210110
  • Received Date: 2021-08-30
  • Accepted Date: 2021-12-14
  • Rev Recd Date: 2021-11-08
  • Available Online: 2022-03-02
  • Publish Date: 2022-05-19
  • The 2-Dimensional (2D) and 3-Dimensional (3D) velocimetry based on schlieren/shadowgraph methods are reviewed in this article. The main content includes the basic optical setups and principles of schlieren and shadowgraph systems, as well as the velocimetry algorithms. For 2D measurement, there are mainly two types of velocimetry algorithms: one is cross-correlation algorithm adopted by PIV, while the other is the optical flow method. The basic formulas, advantages and limitations are introduced comparatively. A recent developed schlieren motion algorithm can provide high accuracy and dense estimation, which is promising and applicable in a wide range of applications. The 3D reconstruction and particle tracking algorithms highly rely on the systems. In this review, three different setups are introduced, including tomographic shadowgraphy, two-view collimated light path shadowgraphy and two-view converging path shadowgraphy. The two-view systems are more concise in setup, requiring less equipment, which are advantageous for high-speed measurements. The 3D particle tracking algorithms of two-view systems are introduced, while the main focus is placed on the image space-based tracking algorithms and the spatial-temporal tracking methods. The latter introduces the temporal predictions into the stereo matching process. The particle reconstruction and tracking correctness in dense particle situations is improved significantly by using the strongly coupled spatial and temporal constraints for optimisation. Its performance is superior to several artificial intelligence methods. The progress of the velocimetry algorithms, together with the imaging advantages of short exposure and high-frequency framing rate, has promoted schlieren/shadowgraph from conventional flow visualization to advanced velocimetry techniques, which can play a role for experimental study in a wide range of complex turbulent and transient flow conditions.
  • loading
  • [1]
    RAFFEL M, WILLERT C E, WERELEY S T, et al. Particle image velocimetry: a practical guide[M]. Berlin, Heidelberg: Springer Press, 2018. doi: 10.1007/978-3-540-72308-0
    [2]
    孙冬,张春梅,吴剑华. 几种典型流动测量技术的原理及应用现状[J]. 辽宁化工,2007,36(2):131-135. doi: 10.3969/j.issn.1004-0935.2007.02.020

    SUN D,ZHANG C M,WU J H. Principle and application status for several kinds of typical technology of flow measurement[J]. Liaoning Chemical Industry,2007,36(2):131-135. doi: 10.3969/j.issn.1004-0935.2007.02.020
    [3]
    SCHLATTER P,ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics,2010,659:116-126. doi: 10.1017/s0022112010003113
    [4]
    MAAS H G,GRUEN A,PAPANTONIOU D. Particle track-ing velocimetry in three-dimensional flows[J]. Experiments in Fluids,1993,15(2):133-146. doi: 10.1007/BF00190953
    [5]
    MENG H,PAN G,PU Y,et al. Holographic particle image velocimetry: from film to digital recording[J]. Measurement Science and Technology,2004,15(4):673-685. doi: 10.1088/0957-0233/15/4/009
    [6]
    ELSINGA G E,SCARANO F,WIENEKE B,et al. Tomographic particle image velocimetry[J]. Experiments in Fluids,2006,41(6):933-947. doi: 10.1007/s00348-006-0212-z
    [7]
    KITZHOFER J,BRÜCKER C. Tomographic particle track-ing velocimetry using telecentric imaging[J]. Experiments in Fluids,2010,49(6):1307-1324. doi: 10.1007/s00348-010-0879-z
    [8]
    SHI S X,DING J F,NEW T H,et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids,2017,58(7):1-16. doi: 10.1007/s00348-017-2365-3
    [9]
    RIENITZ J. Schlieren experiment 300 years ago[J]. Nature,1975,254(5498):293-295. doi: 10.1038/254293a0
    [10]
    FOUCAULT L. Memoire sur la construction des telescopes en verre argente[J]. Annales de I’Observatoire Imperial de Paris,1859,5:197-237.
    [11]
    DRAPER H. On the construction of a silvered glass tele-scope, fifteen and a half inches aperture, and its use in cele-stial photography[M]. Washington: Smithsonian institution, 1864. doi: 10.5962/bhl.title.32724
    [12]
    TOEPLER A. Beobachtungen nach der schlierenmethode[M]. Ostwald’s Klassiker der Exakten Wissenschaften, 1906.
    [13]
    SETTLES G S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media[M]. Berlin, Heidelberg: Springer Press, 2006: 6-7.
    [14]
    MACH E,SALCHER P. Photographische fixirung der durch projectile in der luft eingeleiteten vorgänge[J]. Annalen Der Physik,1887,268(10):277-291. doi: 10.1002/andp.18872681008
    [15]
    DVOŘÁK V. Ueber eine neue einfache Art der Schlieren-beobachtung[J]. Annalen Der Physik Und Chemie,1880,245,9(3):502-511. doi: 10.1002/andp.18802450309
    [16]
    WEINBERG F J. Optics of flames, including methods for the study of refractive index fields in combustion and aerodynamics[M]. London: Butterworths and Company(Publishers) Limited, 1963. doi: 10.1017/S0001924000062904
    [17]
    冯天植,刘成民,赵润祥,等. 纹影技术述评[J]. 弹道学报,1994,6(2):89-96.

    FENG T Z,LIU C M,ZHAO R X,et al. Schlieren methods: a review of techniques[J]. Journal of Ballistics,1994,6(2):89-96.
    [18]
    李素循,倪招勇. 高超声速层流干扰流场研究[J]. 宇航学报,2003,24(6):547-551,573. doi: 10.3321/j.issn:1000-1328.2003.06.001

    LI S X,NI Z Y,. Investigation of Laminar interactive flowfield in hypersonic flow[J]. Journal of Astronautics,2003,24(6):547-551,573. doi: 10.3321/j.issn:1000-1328.2003.06.001
    [19]
    吴继飞,王元靖,罗新福,等. 高超声速风洞多体干扰与分离试验技术[J]. 实验流体力学,2010,24(3):99-102. doi: 10.3969/j.issn.1672-9897.2010.03.021

    WU J F,WANG Y J,LUO X F,et al. A test technique for multi-boby interference and separation in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2010,24(3):99-102. doi: 10.3969/j.issn.1672-9897.2010.03.021
    [20]
    HOWES W L. Rainbow schlieren vs Mach-Zehnder interfero-meter: a comparison[J]. Applied Optics,1985,24(6):816-822. doi: 10.1364/ao.24.000816
    [21]
    HOWES W L. Rainbow schlieren[M]. Washington: National Aeronautics and Space Administration, Scientific and Tech-nical Information Branch, 1983.
    [22]
    冯天植. 彩色纹影技术探讨[J]. 南京理工大学学报(自然科学版),1984,8(2):167-176. doi: 10.14177/j.cnki.32-1397n.1984.02.013

    FENG T Z. The discussion about techniques of colored schlieren[J]. Journal of Nanjing University of Science and Technology,1984,8(2):167-176. doi: 10.14177/j.cnki.32-1397n.1984.02.013
    [23]
    蒋冠雷,洪延姬,叶继飞,等. 彩虹纹影定量测量实验方法研究[J]. 装备指挥技术学院学报,2012,23(1):127-131. doi: 10.3783/j.issn.1673-0127.2012.01.028

    JIANG G L,HONG Y J,YE J F,et al. Experimental investigation of the quantitative measurement by rainbow schlieren[J]. Journal of the Academy of Equipment Command & Technology,2012,23(1):127-131. doi: 10.3783/j.issn.1673-0127.2012.01.028
    [24]
    吴文堂,洪延姬,叶继飞,等. 冲击射流的彩虹纹影实验研究[J]. 实验流体力学,2014,28(2):65-68. doi: 10.11729/syltlx20130055

    WU W T,HONG Y J,YE J F,et al. Experimental research on supersonic impinging jet by rainbow schlieren[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):65-68. doi: 10.11729/syltlx20130055
    [25]
    FUKUNAGA R,ISLAM M M,AWATA Y,et al. Application of rainbow schlieren deflectometry for jets from round Laval nozzles followed by cylindrical ducts[J]. Journal of Flow Control, Measurement & Visualization,2021,9(2):15-27. doi: 10.4236/jfcmv.2021.92002
    [26]
    ALVAREZ-HERRERA C,MORENO-HERNÁNDEZ D,BARRIENTOS-GARCÍA B. Temperature measurement of an axisymmetric flame by using a schlieren system[J]. Journal of Optics A: Pure and Applied Optics,2008,10(10):104014. doi: 10.1088/1464-4258/10/10/104014
    [27]
    ALVAREZ-HERRERA C,MORENO-HERNÁNDEZ D,BARRIENTOS-GARCÍA B,et al. Temperature measure-ment of air convection using a schlieren system[J]. Optics & Laser Technology,2009,41(3):233-240. doi: 10.1016/j.optlastec.2008.07.004
    [28]
    MEIER G. New optical tools for fluid mechanics[J]. Sadhana,1998,23(5-6):557-567. doi: 10.1007/BF02744579
    [29]
    GOLDHAHN E, ALHAJ O, HERBST F, et al. Quantita-tive measurements of three-dimensional density fields using the background oriented schlieren technique[M]//Imaging Measurement Methods for Flow Analysis. Berlin, Heidelberg:Springer Press, 2009: 135-144. doi: 10.1007/978-3-642-01106-1_14
    [30]
    GOLDHAHN E,SEUME J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids,2007,43(2-3):241-249. doi: 10.1007/s00348-007-0331-1
    [31]
    张俊,胥頔,张龙. 基于BOS技术的密度场测量研究[J]. 实验流体力学,2015,29(1):77-82. doi: 10.11729/syltlx20140029

    ZHANG J,XU D,ZHANG L. Research on density measurement based on background oriented schlieren method[J]. Journal of Experiments in Fluid Mechanics,2015,29(1):77-82. doi: 10.11729/syltlx20140029
    [32]
    孟晟,杨臧健,王明晓,等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学,2015,29(4):65-69. doi: 10.11729/syltlx20140117

    MENG S,YANG Z J,WANG M X,et al. Application of quantitative schlieren method in flame temperature mea-surement[J]. Journal of Experiments in Fluid Mechanics,2015,29(4):65-69. doi: 10.11729/syltlx20140117
    [33]
    LIU H C,HUANG J Q,LI L,et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented Schlieren tomography[J]. Science China Technological Sciences,2021,64(1):98-110. doi: 10.1007/s11431-020-1663-5
    [34]
    GOLDSTEIN R. Fluid mechanics measurements[M]. 2nd ed. Boca Raton: Routledge, 2017. doi: 10.1201/9780203755723
    [35]
    SETTLES G S,HACKETT E B,MILLER J D,et al. Full-scale schlieren flow visualization[J]. Flow Visualization,1995,7:2-13.
    [36]
    EDGERTON H E. Shock wave photography of large subjects in daylight[J]. Review of Scientific Instruments,1958,29(2):171-172. doi: 10.1063/1.1716129
    [37]
    DENNIS K,MALEY L,LIANG Z,et al. Implementation of large scale shadowgraphy in hydrogen explosion pheno-mena[J]. International Journal of Hydrogen Energy,2014,39(21):11346-11353. doi: 10.1016/j.ijhydene.2014.05.002
    [38]
    WEINSTEIN L M. Large-field high-brightness focusing schlieren system[J]. AIAA Journal,1993,31(7):1250-1255. doi: 10.2514/3.11760
    [39]
    徐翔,谢爱民,吕治国,等. 聚焦纹影显示技术在激波风洞的初步应用[J]. 实验流体力学,2009,23(3):75-79. doi: 10.3969/j.issn.1672-9897.2009.03.016

    XU X,XIE A M,LÜ Z G,et al. Application of focusing schlieren visualization system in shock tunnel experiment[J]. Journal of Experiments in Fluid Mechanics,2009,23(3):75-79. doi: 10.3969/j.issn.1672-9897.2009.03.016
    [40]
    RICHARD H,RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology,2001,12(9):1576-1585. doi: 10.1088/0957-0233/12/9/325
    [41]
    AGRAWAL A K,BUTUK N K,GOLLAHALLI S R,et al. Three-dimensional rainbow schlieren tomography of a temperature field in gas flows[J]. Applied Optics,1998,37(3):479-485. doi: 10.1364/ao.37.000479
    [42]
    KESSLER T J,HILL W G. A color schlieren system[J]. Photographic Applications in Science, Technology and Medicine,1974,9:22-24.
    [43]
    TOWNEND H C H. A method of air flow cinematography capable of quantitative analysis[J]. Journal of the Aeronautical Sciences,1936,3(10):343-352. doi: 10.2514/8.267
    [44]
    McINTYRE S, SETTLES G. Optical experiments on axisymmetric compressible turbulent mixing layers[C]//Proc of the 29th Aerospace Sciences Meeting. 1991. doi: 10.2514/6.1991-623
    [45]
    KEGERISE M A, SETTLES G S. Schlieren image-correlation velocimetry and its application to free-convection flows[C]//Proc of the 9th International Symposium on Flow Visualization. 2000.
    [46]
    JONASSEN D R,SETTLES G S,TRONOSKY M D. Schlieren “PIV” for turbulent flows[J]. Optics and Lasers in Engineering,2006,44(3-4):190-207. doi: 10.1016/j.optlaseng.2005.04.004
    [47]
    BISWAS S,QIAO L. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet[J]. Experiments in Fluids,2017,58(3):1-20. doi: 10.1007/s00348-017-2305-2
    [48]
    OZAWA Y, NONOMURA T, ASAI K. Comparison of time-averaged supersonic jet profile acquired by particle image velocimetry and shadowgraph velocimetry using single pixel ensemble correlation[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0322
    [49]
    HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
    [50]
    BERGEN J R, ANANDAN P, HANNA K J, et al. Hierarchical model-based motion estimation[M]//Computer Vision—ECCV'92. Berlin, Heidelberg: Springer Press, 1992: 237-252. doi: 10.1007/978-1-4615-3236-1_1
    [51]
    BLACK M J,ANANDAN P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields[J]. Computer Vision and Image Understanding,1996,63(1):75-104. doi: 10.1006/cviu.1996.0006
    [52]
    FU S,WU Y J. Detection of velocity distribution of a flow field using sequences of Schlieren images[J]. Optical Engineering,2001,40(8):1661. doi: 10.1117/1.1386792
    [53]
    SUTER. Motion estimation and vector splines[C]//Proc of the 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1994: 939-942. doi: 10.1109/CVPR.1994.323929
    [54]
    CORPETTI T,HEITZ D,ARROYO G,et al. Fluid experimental flow estimation based on an optical-flow scheme[J]. Experiments in Fluids,2006,40(1):80-97. doi: 10.1007/s00348-005-0048-y
    [55]
    LIU T S,SHEN L X. Fluid flow and optical flow[J]. Journal of Fluid Mechanics,2008,614:253-291. doi: 10.1017/s0022112008003273
    [56]
    ARNAUD E, MÉMIN E, SOSA R, et al. A fluid motion estimator for schlieren image velocimetry[M]//Computer Vision – ECCV 2006. Berlin, Heidelberg: Springer Press, 2006: 198-210. doi: 10.1007/11744023_16
    [57]
    WANG Q,WU Y,CHENG H T,et al. A schlieren motion estimation method for seedless velocimetry measurement[J]. Experimental Thermal and Fluid Science,2019,109:109880. doi: 10.1016/j.expthermflusci.2019.109880
    [58]
    SUN D Q, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles[C]//Proc of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010: 2432-2439. doi: 10.1109/CVPR.2010.5539939
    [59]
    WANG Q,MEI X H,WU Y,et al. An optimization and parametric study of a schlieren motion estimation method[J]. Flow, Turbulence and Combustion,2021,107(3):609-630. doi: 10.1007/s10494-021-00246-1
    [60]
    ESTEVADEORDAL J, GOSS L. PIV with LED: Particle Shadow Velocimetry (PSV)[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-37
    [61]
    GOSS L P, ESTEVADEORDAL J, CRAFTON J W. Velocity measurements near walls, cavities, and model surfaces using particle shadow velocimetry (PSV)[C]//Proc of the 2007 22nd International Congress on Instrumenta-tion in Aerospace Simulation Facilities. 2007: 1-8. doi: 10.1109/ICIASF.2007.4380874
    [62]
    BRÖDER D,SOMMERFELD M. Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows[J]. Measurement Science and Technology,2007,18(8):2513-2528. doi: 10.1088/0957-0233/18/8/028
    [63]
    TUNG K Y,LI C C,YANG J T. Mixing and hydro-dynamic analysis of a droplet in a planar serpentine micromixer[J]. Microfluidics and Nanofluidics,2009,7(4):545-557. doi: 10.1007/s10404-009-0415-8
    [64]
    BHARTI O S,SAHA A K,DAS M K,et al. Simultaneous measurement of velocity and temperature fields during natural convection in a water-filled cubical cavity[J]. Experimental Thermal and Fluid Science,2018,99:272-286. doi: 10.1016/j.expthermflusci.2018.07.039
    [65]
    BHARTI O S,SAHA A K,DAS M K. Sensitivity analysis of schlieren-particle image velocimetry system for simultaneous measurement of flow and temperature field of a free convective flow inside a cubic cavity[J]. Journal of Thermal Science and Engineering Applications,2022,14(5):051005. doi: 10.1115/1.4051878
    [66]
    CORNIC P,LECLAIRE B,CHAMPAGNAT F,et al. Double-frame tomographic PTV at high seeding densities[J]. Experiments in Fluids,2020,61(2):1-24. doi: 10.1007/s00348-019-2859-2
    [67]
    WILLNEFF J. A spatio-temporal matching algorithm for 3D particle tracking velocimetry[D]. Zurich, Switzerland: Swiss Federal Institute of Technology, 2003. doi: 10.3929/ethz-a-004620286
    [68]
    GAO Q,WANG H P,SHEN G X. Review on development of volumetric particle image velocimetry[J]. Chinese Science Bulletin,2013,58(36):4541-4556. doi: 10.1007/s11434-013-6081-y
    [69]
    KATZ J,SHENG J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics,2010,42(1):531-555. doi: 10.1146/annurev-fluid-121108-145508
    [70]
    BAO X L,LI M G. Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry[J]. Optics and Lasers in Engineering,2011,49(5):623-631. doi: 10.1016/j.optlaseng.2011.01.015
    [71]
    JUX C. Robotic volumetric particle tracking velocimetry by coaxial imaging and illumination[J]. Delft University of Technology and Technical University of Denmark, 2017.
    [72]
    WANG Y H, IDOUGHI R, HEIDRICH W. Stereo event-based particle tracking velocimetry for 3D fluid flow reconstruction[C]//Computer Vision – ECCV 2020. 2020: 36-53. doi: 10.1007/978-3-030-58526-6_3
    [73]
    SCHANZ D,GESEMANN S,SCHRÖDER A,et al. Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction[J]. Measurement Science and Technology,2013,24(2):024009. doi: 10.1088/0957-0233/24/2/024009
    [74]
    WU Y, WANG Q, ZHAO C Y, et al. Three-dimensional particle tracking velocimetry with a stereoscopic shadow-graph system[C]// Proc of the 11th Australasian Natural Convection Workshop. 2019.
    [75]
    WANG Q,ZHANG Y. High speed stereoscopic shadow-graph imaging and its digital 3D reconstruction[J]. Measurement Science and Technology,2011,22(6):065302. doi: 10.1088/0957-0233/22/6/065302
    [76]
    SCHNEIDERS J F G,SCARANO F,JUX C,et al. Coaxial volumetric velocimetry[J]. Measurement Science and Technology,2018,29(6):065201. doi: 10.1088/1361-6501/aab07d
    [77]
    SAREDI E,SCIACCHITANO A,SCARANO F. Multi-Δt 3D-PTV based on Reynolds decomposition[J]. Measurement Science and Technology,2020,31(8):084005. doi: 10.1088/1361-6501/ab803d
    [78]
    KIM D,KIM M,SAREDI E,et al. Robotic PTV study of the flow around automotive side-view mirror models[J]. Experimental Thermal and Fluid Science,2020,119:110202. doi: 10.1016/j.expthermflusci.2020.110202
    [79]
    MARTÍNEZ GALLAR B,OUDHEUSDEN B W,SCIACCHITANO A,et al. Large-scale volumetric flow visualization of the unsteady wake of a flapping-wing micro air vehicle[J]. Experiments in Fluids,2019,61(1):1-21. doi: 10.1007/s00348-019-2854-7
    [80]
    PEREIRA F,GHARIB M. Defocusing digital particle image velocimetry and the three-dimensional characteri-zation of two-phase flows[J]. Measurement Science and Technology,2002,13(5):683-694. doi: 10.1088/0957-0233/13/5/305
    [81]
    PEREIRA F,GHARIB M. A method for three-dimensional particle sizing in two-phase flows[J]. Measurement Science and Technology,2004,15(10):2029-2038. doi: 10.1088/0957-0233/15/10/012
    [82]
    SHENG J,MALKIEL E,KATZ J. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer[J]. Experiments in Fluids,2008,45(6):1023-1035. doi: 10.1007/s00348-008-0524-2
    [83]
    SALAZAR J P L C,DE-JONG J,CAO L J,et al. Experimental and numerical investigation of inertial particle clustering in isotropic turbulence[J]. Journal of Fluid Mechanics,2008,600:245-256. doi: 10.1017/s0022112008000372
    [84]
    BELDEN J,TRUSCOTT T T,AXIAK M C,et al. Three-dimensional synthetic aperture particle image velocimetry[J]. Measurement Science and Technology,2010,21(12):125403. doi: 10.1088/0957-0233/21/12/125403
    [85]
    SCARANO F,GHAEMI S,CARIDI G C A,et al. On the use of helium-filled soap bubbles for large-scale tomogra-phic PIV in wind tunnel experiments[J]. Experiments in Fluids,2015,56(2):1-12. doi: 10.1007/s00348-015-1909-7
    [86]
    LYNCH K P,SCARANO F. Material acceleration estima-tion by four-pulse tomo-PIV[J]. Measurement Science and Technology,2014,25(8):084005. doi: 10.1088/0957-0233/25/8/084005
    [87]
    SCARANO F,POELMA C. Three-dimensional vorticity patterns of cylinder wakes[J]. Experiments in Fluids,2009,47(1):69-83. doi: 10.1007/s00348-009-0629-2
    [88]
    SCHRODER A, GEISLLER R, SIEVERLING A, et al. Lagrangian aspects of coherent structures in a turbulent boundary layer flow using TR-Tomo PIV and PTV[C]// Proceedings of 8th International Symposium on Particle Image Velocimetry. 2009.
    [89]
    SCHRÖDER A,GEISLER R,STAACK K,et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV[J]. Experiments in Fluids,2011,50(4):1071-1091. doi: 10.1007/s00348-010-1014-x
    [90]
    HUMBLE R, ELSINGA G, SCARANO F, et al. Investigation of the instantaneous 3D flow organization of a SWTBLI using tomographic PIV[C]//Proc of the 37th AIAA Fluid Dynamics Conference and Exhibit. 2007. doi: 10.2514/6.2007-4112
    [91]
    VIOLATO D,SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids,2011,23(12):124104. doi: 10.1063/1.3665141
    [92]
    GHAEMI S,SCARANO F. Counter-hairpin vortices in the turbulent wake of a sharp trailing edge[J]. Journal of Fluid Mechanics,2011,689:317-356. doi: 10.1017/jfm.2011.431
    [93]
    HAIN R,KÄHLER C J,MICHAELIS D. Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate[J]. Experiments in Fluids,2008,45(4):715-724. doi: 10.1007/s00348-008-0553-x
    [94]
    STAACK K, GEISLER R, SCHRÖDER A, et al. 3D3C-coherent structure measurements in a free turbulent jet[C]//Proc of the 15th International Symposium on Application Laser Techniques to Fluid Mechanics. 2010.
    [95]
    ORTIZ-DUENAS C, KIM J, LONGMIRE E K. Liquid-liquid drop coalescence using tomographic PIV[C]//Proc of the 8th International Symposium on Particle Image Velocimetry. 2009.
    [96]
    ATKINSON C,SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids,2009,47(4-5):553-568. doi: 10.1007/s00348-009-0728-0
    [97]
    ATKINSON C,COUDERT S,FOUCAUT J M,et al. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer[J]. Experiments in Fluids,2011,50(4):1031-1056. doi: 10.1007/s00348-010-1004-z
    [98]
    BOUSHAKI T,KOCHED A,MANSOURI Z,et al. Volumetric velocity measurements (V3V) on turbulent swirling flows[J]. Flow Measurement and Instrumentation,2017,54:46-55. doi: 10.1016/j.flowmeasinst.2016.12.003
    [99]
    LIU Y,CHENG B,BARBERA G,et al. Volumetric visualization of the near- and far-field wake in flapping wings[J]. Bioinspiration & Biomimetics,2013,8(3):036010. doi: 10.1088/1748-3182/8/3/036010
    [100]
    ZHAO Z,BUCHNER A-J,ATKINSON C,et al. Volumetric measurements of a self-similar adverse pressure gradient turbulent boundary layer using single-camera light-field particle image velocimetry[J]. Experiments in Fluids,2019,60(9):1-14. doi: 10.1007/s00348-019-2788-0
    [101]
    MEI D,DING J F,SHI S X,et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids,2019,60(8):1-21. doi: 10.1007/s00348-019-2781-7
    [102]
    SCHOBESBERGER J,LICHTNEGER P,HAUER C,et al. Three-dimensional coherent flow structures during inci-pient particle motion[J]. Journal of Hydraulic Engineering,2020,146(5):04020027. doi: 10.1061/(asce)hy.1943-7900.0001717
    [103]
    VIRANT M,DRACOS T. 3D PTV and its application on Lagrangian motion[J]. Measurement Science and Technology,1997,8(12):1539-1552. doi: 10.1088/0957-0233/8/12/017
    [104]
    OLIVEIRA J L G,GELD C W M,KUERTEN J G M. Lagrangian and eulerian statistics of pipe flows measured with 3D-PTV at moderate and high Reynolds numbers[J]. Flow, Turbulence and Combustion,2013,91(1):105-137. doi: 10.1007/s10494-013-9457-9
    [105]
    WU Y,WANG Q,ZHAO C Y. Three-Dimensional droplet splashing dynamics measurement with a stereoscopic sha-dowgraph system[J]. International Journal of Heat and Fluid Flow,2020,83:108576. doi: 10.1016/j.ijheatfluidflow.2020.108576
    [106]
    KLINNER J,WILLERT C. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions[J]. Experiments in Fluids,2012,53(2):531-543. doi: 10.1007/s00348-012-1308-2
    [107]
    HUCK P,MACHICOANE N,VOLK R. A cost-efficient shadow particle tracking velocimetry setup suitable for tracking small objects in a large volume[J]. Procedia IUTAM,2017,20:175-182. doi: 10.1016/j.piutam.2017.03.024
    [108]
    DABIRI D, PECORA C. Particle tracking velocimetry[M]. Bristol: IOP Publishing, 2019doi: 10.1088/978-0-7503-2203-4ch5
    [109]
    HUHN F,SCHANZ D,MANOVSKI P,et al. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking[J]. Experiments in Fluids,2018,59(5):1-16. doi: 10.1007/s00348-018-2533-0
    [110]
    DISCETTI S,COLETTI F. Volumetric velocimetry for fluid flows[J]. Measurement Science and Technology,2018,29(4):042001. doi: 10.1088/1361-6501/aaa571
    [111]
    SCHANZ D,GESEMANN S,SCHRÖDER A. Shake-The-Box: Lagrangian particle tracking at high particle image densities[J]. Experiments in Fluids,2016,57(5):1-27. doi: 10.1007/s00348-016-2157-1
    [112]
    OUELLETTE N T,XU H T,BODENSCHATZ E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms[J]. Experiments in Fluids,2006,40(2):301-313. doi: 10.1007/s00348-005-0068-7
    [113]
    ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334. doi: 10.1109/34.888718
    [114]
    ZHANG Z Y. Motion and structure from two perspective views: from essential parameters to Euclidean motion through the fundamental matrix[J]. Journal of the Optical Society of America A,1997,14(11):2938. doi: 10.1364/josaa.14.002938
    [115]
    OLIVEIRA J L G,VAN DER GELD C W M,KUERTEN J G M. Concentration and velocity statistics of inertial particles in upward and downward pipe flow[J]. Journal of Fluid Mechanics,2017,822:640-663. doi: 10.1017/jfm.2017.289
    [116]
    WU Y,WANG Q,ZHAO C Y. A spatial-temporal algorithm for three-dimensional particle tracking veloci-metry using two-view systems[J]. Measurement Science and Technology,2021,32(6):065011. doi: 10.1088/1361-6501/abeb43
    [117]
    BREVIS W,NIÑO Y,JIRKA G H. Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry[J]. Experiments in Fluids,2011,50(1):135-147. doi: 10.1007/s00348-010-0907-z
    [118]
    CLARK A,MACHICOANE N,ALISEDA A. A quan-titative study of track initialization of the four-frame best estimate algorithm for three-dimensional Lagrangian particle tracking[J]. Measurement Science and Technology,2019,30(4):045302. doi: 10.1088/1361-6501/ab0786
    [119]
    DRACOS T. Three-dimensional velocity and vorticity measuring and image analysis techniques[M]. Dordrecht: Springer, 1996. doi: 10.1007/978-94-015-8727-3
    [120]
    PANDAY S P,OHMI K,NOSE K. An ant colony optimization based stereoscopic particle pairing algorithm for three-dimensional particle tracking velocimetry[J]. Flow Measurement and Instrumentation,2011,22(1):86-95. doi: 10.1016/j.flowmeasinst.2010.12.009
    [121]
    GESEMANN S. From particle tracks to velocity and acceleration fields using B-splines and penalties[EB/OL]. (2015-11-30)[2021-08-30]. https://arxiv.org/pdf/1510.09034v1.pdf.
    [122]
    LI Y,PERLMAN E,WAN M P,et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence[J]. Journal of Turbulence,2008,9:N31. doi: 10.1080/14685240802376389
    [123]
    PERLMAN E, BURNS R, LI Y, et al. Data exploration of turbulence simulations using a database cluster[C]//Proc of the 2007 ACM/IEEE Conference on Supercom-puting. 2007. doi: 10.1145/1362622.1362654
    [124]
    GUEZENNEC Y G,BRODKEY R S,TRIGUI N,et al. Algorithms for fully automated three-dimensional particle tracking velocimetry[J]. Experiments in Fluids,1994,17(4):209-219. doi: 10.1007/BF00203039
    [125]
    GIM Y,JANG D K,SOHN D K,et al. Three-dimensional particle tracking velocimetry using shallow neural network for real-time analysis[J]. Experiments in Fluids,2020,61(2):1-8. doi: 10.1007/s00348-019-2861-8
    [126]
    OHMI K, SAPKOTA A. Particle tracking velocimetry using cellular neural network[C]//The 2006 IEEE Interna-tional Joint Conference on Neural Network Proceedings. 2006: 3963-3969. doi: 10.1109/IJCNN.2006.246917
    [127]
    PANDAY S P. Stereoscopic correspondence of particles for 3-dimensional particle tracking velocimetry by using genetic algorithm[J]. Journal of the Institute of Engineering,2017,12(1):10-26. doi: 10.3126/jie.v12i1.16706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)

    Article Metrics

    Article views (4283) PDF downloads(565) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return