Citation: | CHEN J, SHI Z W, YAO Z Y, et al. Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 113-123. DOI: 10.11729/syltlx20210165 |
[1] |
AUSTIN R. Unmanned aircraft systems: UAVs design, development and deployment[M]. Chichester: John Wiley & Sons, Ltd., 2010. doi: 10.1002/9780470664797
|
[2] |
KOCHAN A. Automation in the sky[J]. Industrial Robot:an International Journal, 2005, 32(6): 468–471. doi: 10.1108/01439910510629181
|
[3] |
WEATHERINGTON D, DEPUTY U. Unmanned aircraft systems roadmap 2005-2030[R]. OUSD(AT&L), 2005.
|
[4] |
VAN BLYENBURGH P. UAVs: an overview[J]. Air & Space Europe, 1999, 1(5-6): 43–47. doi: 10.1016/S1290-0958(00)88869-3
|
[5] |
刘国春. 大展弦比机翼气动外形设计方案研究[J]. 飞机设计, 2011, 31(3): 9–12, 36. DOI: 10.3969/j.issn.1673-4599.2011.03.003
LIU G C. Research on design of high aspect wing shape[J]. Aircraft Design, 2011, 31(3): 9–12, 36. doi: 10.3969/j.issn.1673-4599.2011.03.003
|
[6] |
陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300–307. DOI: 10.7638/kqdlxxb-2012.0134
CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300–307. doi: 10.7638/kqdlxxb-2012.0134
|
[7] |
KLESH A T, KABAMBA P T. Solar-powered aircraft: energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320–1329. doi: 10.2514/1.40139
|
[8] |
王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6): 913–920. DOI: 10.3969/j.issn.1000-2758.2015.06.008
WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 913–920. doi: 10.3969/j.issn.1000-2758.2015.06.008
|
[9] |
RAYLEIGH. The soaring of birds[J]. Nature, 1883, 27(701): 534–535. doi: 10.1038/027534a0
|
[10] |
BENCATEL R, TASSO DE SOUSA J, GIRARD A. Atmospheric flow field models applicable for aircraft endurance extension[J]. Progress in Aerospace Sciences, 2013, 61: 1–25. doi: 10.1016/j.paerosci.2013.03.001
|
[11] |
CONE C D. Thermal soaring of birds[J]. American Scientist, 1962, 50(1): 180–209.
|
[12] |
ALLEN M. Updraft model for development of autonomous soaring uninhabited air vehicles[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 1510. doi: 10.2514/6.2006-1510
|
[13] |
ALLEN M, LIN V. Guidance and control of an autonomous soaring vehicle with flight test results[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. doi: 10.2514/6.2007-867
|
[14] |
WHARINGTON J. Autonomous control of soaring aircraft by reinforcement learning[D]. Melbourne: Royal Melbourne Institute of Technology, 1998.
|
[15] |
KAHVECI N E, IOANNOU P A, MIRMIRANI M D. Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 691–707. doi: 10.1109/TCST.2007.908207
|
[16] |
EDWARDS D. Implementation details and flight test results of an autonomous soaring controller[C]//Proc of the AIAA Guidance, Navigation and Control Conference and Exhibit. 2008. doi: 10.2514/6.2008-7244
|
[17] |
吴吉昌, 李成勤, 朱俊强. 七孔探针及其在叶栅二次流动测量中的应用[J]. 航空动力学报, 2011, 26(8): 1879–1886. DOI: 10.13224/j.cnki.jasp.2011.08.033
WU J C, LI C Q, ZHU J Q. Seven-hole probe and its application in the secondary flow for a high-load compressor cascade[J]. Journal of Aerospace Power, 2011, 26(8): 1879–1886. doi: 10.13224/j.cnki.jasp.2011.08.033
|
[18] |
VENKATESWARA BABU C, GOVARDHAN M, SITARAM N. A method of calibration of a seven-hole pressure probe for measuring highly three-dimensional flows[J]. Measurement Science and Technology, 1998, 9(3): 468–476. doi: 10.1088/0957-0233/9/3/022
|
[19] |
余莉, 滕海山, 明晓. 利用七孔探针对降落伞流场的试验测量研究[J]. 中国空间科学技术, 2007, 27(5): 65–71. DOI: 10.3321/j.issn:1000-758X.2007.05.011
YU L, TENG H S, MING X. Seven-hole probe measurement on parachute flow field[J]. Chinese Space Science and Technology, 2007, 27(5): 65–71. doi: 10.3321/j.issn:1000-758X.2007.05.011
|
[20] |
MEIER L, TANSKANEN P, HENG L, et al. Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision[J]. Autonomous Robots, 2012, 33(1): 21–39. doi: 10.1007/s10514-012-9281-4
|
[21] |
王文奎, 石柏军. 低速风洞洞体设计[J]. 机床与液压, 2008, 36(5): 93–95.
WANG W K, SHI B J. The design of low speed wind tunnel[J]. Machine Tool & Hydraulics, 2008, 36(5): 93–95.
|
[22] |
张运波. PWM信号的软件实现方法[J]. 微计算机信息, 2002, 18(10): 46–47, 50. DOI: 10.3969/j.issn.1008-0570.2002.10.021
ZHANG Y B. The software implementation method of PWM signal[J]. Control & Automation, 2002, 18(10): 46–47, 50. doi: 10.3969/j.issn.1008-0570.2002.10.021
|
[23] |
ALLEN M. Autonomous soaring for improved endurance of a small uninhabitated air vehicle[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 1025. doi: 10.2514/6.2005-1025
|
[24] |
CHEN J, SHI Z W, ZHOU M B, et al. Modeling and simulation of UAV static soaring based on multi-hole probe[J]. AIP Advances, 2021, 11(7): 075309. doi: 10.1063/5.0055276
|
[25] |
LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002: 168. doi: 10.2514/6.2002-168
|
[26] |
COCHRANE J. MacCready theory with uncertain lift and limited altitude[J]. Technical Soaring, 1999, 23: 88–96.
|