Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):30-48. doi: 10.11729/syltlx20210173
Citation: XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):30-48. doi: 10.11729/syltlx20210173

Recent advances in background oriented Schlieren and its applications

doi: 10.11729/syltlx20210173
  • Received Date: 2021-11-02
  • Accepted Date: 2022-02-18
  • Rev Recd Date: 2022-02-17
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-19
  • Background oriented Schlieren (BOS) has appeared near 2000 as a variant of the classical schlieren technique. It is a new non-intrusive optical diagnostic technique for measuring the refractive index of complex flows quantitatively. Compared to knife-edge and rainbow Schlieren, BOS is advantageous in terms of optical alignment, systematic calibration, and the dimension of the field of view. The principle and the essential system parameters of BOS are introduced in detail. An overview of recent advances in the BOS technology is presented according to the typical sequence of setting up a BOS system. Finally, recent applications of BOS in super/hypersonic flows, combustion, and plasma flow environments are also introduced.
  • loading
  • [1]
    SETTLES G S,COVERT E E. Schlieren and shadowgraph techniques: visualizing phenomena in transport media[J]. Applied Mechanics Reviews,2002,55(4):B76-B77. doi: 10.1115/1.1483362
    [2]
    李桂春. 气动光学[M]. 北京: 国防工业出版社, 2006.

    LI G C. Aero-optics[M]. Beijing: National Defense Industry Press, 2006.
    [3]
    DALZIEL S B,HUGHES G O,SUTHERLAND B R. Whole-field density measurements by :“synthetic schlieren”[J]. Experiments in Fluids,2000,28(4):322-335. doi: 10.1007/s003480050391
    [4]
    RICHARD H,RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology,2001,12(9):1576-1585. doi: 10.1088/0957-0233/12/9/325
    [5]
    MEIER G. Computerized background-oriented Schlieren[J]. Experiments in Fluids,2002,33(1):181-187. doi: 10.1007/s00348-002-0450-7
    [6]
    XIONG Y,WEILENMANN M,NOIRAY N. Analysis and reduction of spurious displacements in high-framing-rate background-oriented Schlieren[J]. Experiments in Fluids,2020,61(2):1-12. doi: 10.1007/s00348-020-2879-y
    [7]
    ELSINGA G E,OUDHEUSDEN B W,SCARANO F,et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren[J]. Experiments in Fluids,2004,36(2):309-325. doi: 10.1007/s00348-003-0724-8
    [8]
    KAGANOVICH D,JOHNSON L A,MAMONAU A A,et al. Benchmarking background oriented schlieren against interferometric measurement using open source tools[J]. Applied Optics,2020,59(30):9553. doi: 10.1364/ao.406301
    [9]
    FISHER T B,QUINN M K,SMITH K L. An experimental sensitivity comparison of the schlieren and background-oriented schlieren techniques applied to hypersonic flow[J]. Measurement Science and Technology,2019,30(6):065202. doi: 10.1088/1361-6501/ab1582
    [10]
    HARGATHER M J,SETTLES G S. A comparison of three quantitative schlieren techniques[J]. Optics and Lasers in Engineering,2012,50(1):8-17. doi: 10.1016/j.optlaseng.2011.05.012
    [11]
    RAFFEL M. Background-oriented schlieren (BOS) tech-niques[J]. Experiments in Fluids,2015,56(3):1-17. doi: 10.1007/s00348-015-1927-5
    [12]
    SETTLES G S,HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology,2017,28(4):042001. doi: 10.1088/1361-6501/aa5748
    [13]
    CAI S Z,WANG Z C,FUEST F,et al. Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics,2021,915:A102. doi: 10.1017/jfm.2021.135
    [14]
    GOJANI A B,KAMISHI B,OBAYASHI S. Measurement sensitivity and resolution for background oriented schlieren during image recording[J]. Journal of Visualization,2013,16(3):201-207. doi: 10.1007/s12650-013-0170-5
    [15]
    GOLDHAHN E,SEUME J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids,2007,43(2-3):241-249. doi: 10.1007/s00348-007-0331-1
    [16]
    LANG H M,OBERLEITHNER K,PASCHEREIT C O,et al. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography[J]. Experiments in Fluids,2017,58(7):1-21. doi: 10.1007/s00348-017-2367-1
    [17]
    XIONG Y,KAUFMANN T,NOIRAY N. Towards robust BOS measurements for axisymmetric flows[J]. Experi-ments in Fluids,2020,61(8):1-12. doi: 10.1007/s00348-020-03007-4
    [18]
    RAJENDRAN L K,BANE S P M,VLACHOS P P. PIV/BOS synthetic image generation in variable density environments for error analysis and experiment design[J]. Measurement Science and Technology,2019,30(8):085302. doi: 10.1088/1361-6501/ab1ca8
    [19]
    AMJAD S,KARAMI S,SORIA J,et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren (BOS)[J]. Measurement Science and Technology,2020,31(11):114002. doi: 10.1088/1361-6501/ab955a
    [20]
    OTA M,LEOPOLD F,NODA R,et al. Improvement in spatial resolution of background-oriented schlieren tech-nique by introducing a telecentric optical system and its application to supersonic flow[J]. Experiments in Fluids,2015,56(3):1-10. doi: 10.1007/s00348-015-1919-5
    [21]
    COZZI F,GÖTTLICH E,ANGELUCCI L,et al. Development of a background-oriented schlieren technique with telecentric lenses for supersonic flow[J]. Journal of Physics: Conference Series,2017,778:012006. doi: 10.1088/1742-6596/778/1/012006
    [22]
    COZZI F,GÖTTLICH E. Enhanced background oriented schlieren (EBOS)[J]. Journal of Physics: Conference Series,2019,1249(1):012017. doi: 10.1088/1742-6596/1249/1/012017
    [23]
    MEIER A H,ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids,2013,54(6):1-6. doi: 10.1007/s00348-013-1549-8
    [24]
    GOODMAN J W. Speckle phenomena in optics: theory and applications[M]. Englewood: Roberts&Company, 2006. doi: 10.1117/3.2548484
    [25]
    MICHALSKI Q,BENITO PAREJO C J,CLAVERIE A,et al. An application of speckle-based background oriented schlieren for optical calorimetry[J]. Experimental Thermal and Fluid Science,2018,91:470-478. doi: 10.1016/j.expthermflusci.2017.09.012
    [26]
    NAKAMURA Y,SUZUKI T,KINEFUCHI K,et al. Speckle beam-oriented schlieren technique[J]. Experiments in Fluids,2021,62(1):1-11. doi: 10.1007/s00348-020-03113-3
    [27]
    RAFFEL M, WILLERT C E, SCARANO F, et al. Particle Image Velocimetry[M]. Cham: Springer International Publi-shing, 2018. doi: 10.1007/978-3-319-68852-7
    [28]
    RAFFEL M,RICHARD H,MEIER G. On the applicability of background oriented optical tomography for large scale aerodynamic investigations[J]. Experiments in Fluids,2000,28(5):477-481. doi: 10.1007/s003480050408
    [29]
    SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):R1-R19. doi: 10.1088/0957-0233/13/1/201
    [30]
    ROESGEN T. Optimal subpixel interpolation in particle image velocimetry[J]. Experiments in Fluids,2003,35(3):252-256. doi: 10.1007/s00348-003-0627-8
    [31]
    WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology,1997,8(12):1379-1392. doi: 10.1088/0957-0233/8/12/002
    [32]
    SOURGEN F,LEOPOLD F,KLATT D. Reconstruction of the density field using the Colored Background Oriented Schlieren Technique (CBOS)[J]. Optics and Lasers in Engineering,2012,50(1):29-38. doi: 10.1016/j.optlaseng.2011.07.012
    [33]
    LEOPOLD F,OTA M,KLATT D,et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization,2013,1(2):69-76. doi: 10.4236/jfcmv.2013.12009
    [34]
    LEOPOLD F, KLATT D, OTA M, et al. Reconstruction of density fields of supersonic flows using an improved Schlieren technique[C]//Proc of the Electro-Optical Remote Sensing XIII . 2019. doi: 10.1117/12.2533463
    [35]
    GARDNER A D,RAFFEL M,SCHWARZ C,et al. Reference-free digital shadowgraphy using a moving BOS background[J]. Experiments in Fluids,2020,61(2):1-5. doi: 10.1007/s00348-019-2865-4
    [36]
    WERNET M P. Real-time background oriented schlieren with self-illuminated speckle background[J]. Measurement Science and Technology,2020,31(1):017001. doi: 10.1088/1361-6501/ab4211
    [37]
    REICHENZER F,SCHNEIDER M,HERKOMMER A. Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds[J]. Experiments in Fluids,2021,62(9):1-18. doi: 10.1007/s00348-021-03285-6
    [38]
    ATCHESON B,HEIDRICH W,IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids,2009,46(3):467-476. doi: 10.1007/s00348-008-0572-7
    [39]
    LUCAS B D, KANADE T. Iterative image registration technique with an application to stereo vision[C]//Proc of Proceedings of the International Joint Conference on Artifical Intelligence. 1981. doi: 10.5555/1623264.1623280
    [40]
    HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
    [41]
    BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[C]//Proc of Computer Vision – ECCV. 2004. doi: 10.1007/978-3-540-24673-2_3
    [42]
    LETELIER J A,HERRERA P,MUJICA N,et al. Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell[J]. Experiments in Fluids,2016,57(2):1-14. doi: 10.1007/s00348-015-2109-1
    [43]
    SCHMIDT B E,WOIKE M R. Wavelet-based optical flow analysis for background-oriented schlieren image proce-ssing[J]. AIAA Journal,2021:1-8. doi: 10.2514/1.j060218
    [44]
    ZHANG X Y,WANG L M,LIU B,et al. Hybrid adaptive wavelet-based optical flow algorithm for background oriented schlieren (BOS) experiments[J]. Mathematical Pr lems in Engineering ,2020,2020:5138153. doi: 10.1155/2020/5138153
    [45]
    RAJENDRAN L K,BANE S P M,VLACHOS P P. Correction to: dot tracking methodology for background-oriented schlieren (BOS)[J]. Experiments in Fluids,2020,61(8):1. doi: 10.1007/s00348-020-03029-y
    [46]
    CHARRUAULT F, GREIDANUS A, WESTERWEEL J. A Dot Tracking Algorithm To Measure Free Surface Deformations[C]. Proc of 18th International Symposium on Flow Visualization. 2018.
    [47]
    RAJENDRAN L,ZHANG J C,BANE S,et al. Uncertainty-based weighted least squares density integration for background-oriented schlieren[J]. Experi-ments in Fluids,2020,61(11):1-12. doi: 10.1007/s00348-020-03071-w
    [48]
    BARINOV Y A. A new method of processing background oriented schlieren images[J]. Technical Physics Letters,2019,45(6):632-634. doi: 10.1134/s106378501906021x
    [49]
    WILDEMAN S. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop[J]. Experiments in Fluids,2018,59(6):1-13. doi: 10.1007/s00348-018-2553-9
    [50]
    ZOU N, SONG Y. Research of background-oriented schlieren based on two-dimensional de Bruijn sequence color coding technology[C]//Proc of the AOPC 2019: Optical Sensing and Imaging Technology. 2019: 107. doi: 10.1117/12.2547580
    [51]
    OTA M,HAMADA K,KATO H,et al. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique[J]. Measurement Science and Technology,2011,22(10):104011. doi: 10.1088/0957-0233/22/10/104011
    [52]
    OTA M, LEOPOLD F, JAGUSINSKI F, et al. Comparison between CBOS (colored background oriented Schlieren) and CGBOS (colored-grid background oriented Schlieren) for supersonic[C]//Proc of 15th International Symposium on Flow Visualization. 2012.
    [53]
    RAMAIAH J,AJITHAPRASAD S,GANNAVARPU R,et al. Fast and robust method for flow analysis using GPU assisted diffractive optical element based background oriented schlieren (BOS)[J]. Optics and Lasers in Engineering,2020,126:105908. doi: 10.1016/j.optlaseng.2019.105908
    [54]
    ZHU Y W, SONG Y, QU X J, et al. Quantitative measurement of colored-fringe background oriented schliecxren based on three-step phase shifting[C]//Proc of the Optical Metrology and Inspection for Industrial Applications V. 2018: 63. doi: 10.1117/12.2500908
    [55]
    TOKGOZ S,GEISLER R,VAN BOKHOVEN L J A,et al. Temperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methods[J]. Measurement Science and Technology,2012,23(11):115302. doi: 10.1088/0957-0233/23/11/115302
    [56]
    VENKATAKRISHNAN L,MEIER G. Density measure-ments using the Background Oriented Schlieren technique[J]. Experiments in Fluids,2004,37(2):237-247. doi: 10.1007/s00348-004-0807-1
    [57]
    WEILENMANN M,XIONG Y,NOIRAY N. On the dispersion of entropy waves in turbulent flows[J]. Journal of Fluid Mechanics,2020,903:R1. doi: 10.1017/jfm.2020.703
    [58]
    VAN HINSBERG N P,RÖSGEN T. Density measure-ments using near-field background-oriented Schlieren[J]. Experiments in Fluids,2014,55(4):1-11. doi: 10.1007/s00348-014-1720-x
    [59]
    DING H L,YI S H,ZHAO X H. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren[J]. Applied Optics,2019,58(11):2948. doi: 10.1364/ao.58.002948
    [60]
    HASHIMOTO Y,FUJII K,KAMEDA M. Modified application of algebraic reconstruction technique to near-field background-oriented schlieren images for three-dimensional flows[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2017,60(2):85-92. doi: 10.2322/tjsass.60.85
    [61]
    GUO G M,LIU H. Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique[J]. Chinese Physics B,2017,26(6):064701. doi: 10.1088/1674-1056/26/6/064701
    [62]
    TAN D J,EDGINGTON-MITCHELL D,HONNERY D. Measurement of density in axisymmetric jets using a novel background-oriented schlieren (BOS) technique[J]. Experi-ments in Fluids,2015,56(11):1-11. doi: 10.1007/s00348-015-2076-6
    [63]
    OHNO H,TOYA K. Scalar potential reconstruction method of axisymmetric 3D refractive index fields with background-oriented schlieren[J]. Optics Express,2019,27(5):5990. doi: 10.1364/oe.27.005990
    [64]
    KLEMKOWSKY J N,FAHRINGER T W,CLIFFORD C J,et al. Plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2017,28(9):095404. doi: 10.1088/1361-6501/aa7f3d
    [65]
    KLEMKOWSKY J N,CLIFFORD C J,BATHEL B F,et al. A direct comparison between conventional and plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2019,30(6):064001. doi: 10.1088/1361-6501/ab1837
    [66]
    VENKATAKRISHNAN L,SURIYANARAYANAN P. Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data[J]. Experiments in Fluids,2009,47(3):463-473. doi: 10.1007/s00348-009-0676-8
    [67]
    SOURGEN F, HAERTIG J, REY C. Comparison between background oriented schlieren measurements (BOS) and numerical simulations[C]//Proc of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2004: 1–18. doi: 10.2514/6.2004-2602
    [68]
    NICOLAS F,TODOROFF V,PLYER A,et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measure-ments[J]. Experiments in Fluids,2015,57(1):1-21. doi: 10.1007/s00348-015-2100-x
    [69]
    ATCHESON B,IHRKE I,HEIDRICH W,et al. Time-resolved 3d capture of non-stationary gas flows[J]. ACM Transactions on Graphics,2008,27(5):1-9. doi: 10.1145/1409060.1409085
    [70]
    GRAUER S J,UNTERBERGER A,RITTLER A,et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame,2018,196:284-299. doi: 10.1016/j.combustflame.2018.06.022
    [71]
    HARTMANN U,SEUME J R. Combining ART and FBP for improved fidelity of tomographic BOS[J]. Measurement Science and Technology,2016,27(9):097001. doi: 10.1088/0957-0233/27/9/097001
    [72]
    GRAUER S J,STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experi-ments in Fluids,2020,61(3):1-17. doi: 10.1007/s00348-020-2912-1
    [73]
    WANG Q,YU T,LIU H C,et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B,2020,37(4):1231. doi: 10.1364/josab.385291
    [74]
    HEINECK J T,BANKS D W,SMITH N T,et al. Background-oriented schlieren imaging of supersonic aircraft in flight[J]. AIAA Journal,2020,59(1):11-21. doi: 10.2514/1.J059495
    [75]
    TIPNIS T J,FINNIS M V,KNOWLES K,et al. Density measurements for rectangular free jets using background-oriented schlieren[J]. The Aeronautical Journal,2013,117(1194):771-785. doi: 10.1017/s0001924000008447
    [76]
    OTA M,KURIHARA K,AKI K,et al. Quantitative density measurement of the lateral jet/cross-flow interaction field by colored-grid background oriented schlieren (CGBOS) technique[J]. Journal of Visualization,2015,18(3):543-552. doi: 10.1007/s12650-015-0297-7
    [77]
    RAMANAH D,RAGHUNATH S,MEE D J,et al. Background oriented schlieren for flow visualisation in hypersonic impulse facilities[J]. Shock Waves,2007,17(1-2):65-70. doi: 10.1007/s00193-007-0097-7
    [78]
    WANG C P,XU P,XUE L S,et al. Three-dimensional reconstruction of incident shock/boundary layer interaction using background-oriented schlieren[J]. Acta Astronau-tica,2019,157:341-349. doi: 10.1016/j.actaastro.2019.01.002
    [79]
    赵玉新,易仕和,田立丰,等. 超声速混合层气动光学畸变与抖动: BOS测量技术及其应用[J]. 中国科学G辑,2010,40(1):33-46. doi: 10.1016/j.actaastro.2019.01.002
    [80]
    冈敦殿,易仕和,米琦,等. 超声速湍流边界层与圆柱相互作用实验研究[J]. 航空学报,2022,43(1):626104. doi: 10.7527/S1000-6893.2021.26104

    GANG D D,YI S H,MI Q,et al. , Experimental study on the interaction between supersonic turbulent boundary layer and cylinder[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1):626104. doi: 10.7527/S1000-6893.2021.26104
    [81]
    郑文鹏,易仕和,牛海波,等. 高超声速4∶1椭圆锥横流不稳定性实验研究[J]. 物理学报,2021,70(24):244702. doi: 10.7498/aps.70.20210807

    ZHENG W P,YI S H,NIU H B,et al. Experimental research on crossflow instability for a hypersonic 4∶1 elliptic cone[J]. Acta Physica Sinica,2021,70(24):244702. doi: 10.7498/aps.70.20210807
    [82]
    NICOLAS F,DONJAT D,LÉON O,et al. 3D reconstruction of a compressible flow by synchronized multi-camera BOS[J]. Experiments in Fluids,2017,58(5):1-15. doi: 10.1007/s00348-017-2325-y
    [83]
    LUO H W,KUSUNOSE J,PINTON G,et al. Rapid quantitative imaging of high intensity ultrasonic pressure fields[J]. The Journal of the Acoustical Society of America,2020,148(2):660. doi: 10.1121/10.0001689
    [84]
    WEILENMANN M,DOLL U,BOMBACH R,et al. Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing[J]. Proceedings of the Combustion Institute,2021,38(4):6135-6143. doi: 10.1016/j.proci.2020.06.233
    [85]
    ZHANG G Y,WANG G Q,HUANG Y,et al. Reconstruction and simulation of temperature and CO2 concentration in an axisymmetric flame based on TDLAS[J]. Optik,2018,170:166-177. doi: 10.1016/j.ijleo.2018.05.123
    [86]
    GAO Y,BOHLIN A,SEEGER T,et al. In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry[J]. Proceedings of the Combustion Institute,2013,34(2):3637-3644. doi: 10.1016/j.proci.2012.05.010
    [87]
    QIN X,XIAO X D,PURI I K,et al. Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames[J]. Combustion and Flame,2002,128(1-2):121-132. doi: 10.1016/S0010-2180(01)00338-8
    [88]
    IFFA E D,AZIZ A R A,MALIK A S. Gas flame temperature measurement using background oriented schlieren[J]. Journal of Applied Sciences,2011,11(9):1658-1662. doi: 10.3923/jas.2011.1658.1662
    [89]
    王根娟,杨臧健,孟晟,等. 背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J]. 实验流体力学,2016,30(2):103-110. doi: 10.11729/syltlx20150083

    WANG G J,YANG Z J,MENG S,et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):103-110. doi: 10.11729/syltlx20150083
    [90]
    孟晟,杨臧健,王明晓,等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学,2015,29(4):65-69. doi: 10.11729/syltlx20140117

    MENG S,YANG Z J,WANG M X,et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mecha-nics,2015,29(4):65-69. doi: 10.11729/syltlx20140117
    [91]
    LIU H C,HUANG J Q,LI L,et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented Schlieren tomography[J]. Science China Technological Sciences,2021,64(1):98-110. doi: 10.1007/s11431-020-1663-5
    [92]
    LIU H C,SHUI C Y,CAI W W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera[J]. Aerospace Science and Technology,2020,97:105621. doi: 10.1016/j.ast.2019.105621
    [93]
    WEILENMANN M, XIONG Y, BOTHIEN M, et al. Background oriented schlieren of fuel jet flapping under thermoacoustic oscillations in a sequential combustor[C]//Proceedings of ASME Turbo Expo 2018: Turboma-chinery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-75517
    [94]
    吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报,2015,36(2):381-405. doi: 10.7527/S1000-6893.2014.0246

    WU Y,LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2):381-405. doi: 10.7527/S1000-6893.2014.0246
    [95]
    TRALDI E,BOSELLI M,SIMONCELLI E,et al. Schlieren imaging: a powerful tool for atmospheric plasma diagnos-tic[J]. EPJ Techniques and Instrumentation,2018,5:4. doi: 10.1140/epjti/s40485-018-0045-1
    [96]
    JIN J,MURSENKOVA I V,SYSOEV N N,et al. Experimental investigation of blast waves from plasma sheet using the background oriented schlieren and shadow methods[J]. Journal of Flow Visualization and Image Processing,2011,18(4):311-328. doi: 10.1615/jflowvisimageproc.2012004373
    [97]
    BLUNCK D L,KIEL B V,GOSS L,et al. Spatial development and temperature of spark kernels exiting into quiescent air[J]. Journal of Propulsion and Power,2012,28(3):458-465. doi: 10.2514/1.B34131
    [98]
    WANG Q S,GENG J H,WANG P,et al. Measurement of discharge channel based on background oriented schlieren technique using an optimized algorithm[J]. AIP Advances,2021,11(6):065114. doi: 10.1063/5.0049042
    [99]
    KOMURO A,OGURA N,ITO M,et al. Visualization of density variations produced by alternating-current dielectric-barrier-discharge plasma actuators using the background-oriented schlieren method[J]. Plasma Sources Science and Technology,2019,28(5):055002. doi: 10.1088/1361-6595/ab1465
    [100]
    SINGH B,RAJENDRAN L K,ZHANG J C,et al. Vortex rings drive entrainment and cooling in flow induced by a spark discharge[J]. Physical Review Fluids,2020,5(11):114501. doi: 10.1103/physrevfluids.5.114501
    [101]
    RAJENDRAN L K,SINGH B,VLACHOS P P,et al. Filamentary surface plasma discharge flow length and time scales[J]. Journal of Physics D:Applied Physics,2021,54(20):205201. doi: 10.1088/1361-6463/abe66a
    [102]
    KANEKO Y,NISHIDA H,TAGAWA Y. Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge[J]. Measurement Science and Technology,2021,32(12):125402. doi: 10.1088/1361-6501/ac1ccc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(2)

    Article Metrics

    Article views (3407) PDF downloads(471) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return