Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
ZHANG H W, XIANG G W, LYU B B, et al. Development of high-precision micro-rolling moment gas bearing balance[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 70-75 doi: 10.11729/syltlx20210182
Citation: ZHANG H W, XIANG G W, LYU B B, et al. Development of high-precision micro-rolling moment gas bearing balance[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 70-75 doi: 10.11729/syltlx20210182

Development of high-precision micro-rolling moment gas bearing balance

doi: 10.11729/syltlx20210182
  • Received Date: 2021-11-12
  • Accepted Date: 2022-01-04
  • Rev Recd Date: 2021-11-24
  • Available Online: 2022-04-07
  • Publish Date: 2023-12-30
  • During the reentry process of the miniaturized reentry vehicle, small asymmetry of its shape can be produced due to surface ablation, resulting in a small rolling moment. In order to obtain the high-precision micro-rolling moment measurement data of the ablation model of the miniaturized reentry vehicle in the hypersonic wind tunnel, and obtain the other five component aerodynamic data, a six component micro-rolling moment gas bearing balance was developed. The rolling moment design load of the balance is 0.02 N·m, and the axial force design load is 200 N, which are orders different from each other. The overall force measurement scheme of “4+2” balance is proposed, where the four component main balance elements cooperate with the two-component MxX elements to complete the extremely mismatched six component aerodynamic measurement. The results of the static calibration and the wind tunnel test show that the balance has good resolution and strong anti-interference ability, and is little affected by temperature. The measurement results of the rolling moment coefficient reach the order of 10–7. The developed gas bearing balance is little affected by the temperature and can be reused. It can measure the six components of aerodynamic data including the micro-rolling moment at the same time, which greatly improves the test efficiency and reduces the error caused by model disassembly.
  • loading
  • [1]
    蒋忠东, 赵忠良, 王树民, 等. 高超声速风洞小滚转力矩测量技术研究[J]. 航空学报, 2001, 22(6): 486–490. doi: 10.3321/j.issn:1000-6893.2001.06.002

    JIANG Z D, ZHAO Z L, WANG S M, et al. Research on the measurement techniques for micro-rolling-moment in a hyper-sonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 486–490. doi: 10.3321/j.issn:1000-6893.2001.06.002
    [2]
    王树民, 谢斌, 刘伟. 带气浮轴承的小滚转力矩气动天平的研制[J]. 流体力学实验与测量, 2002, 16(1): 94–98. doi: 10.3969/j.issn.1672-9897.2002.01.015

    WANG S M, XIE B, LIU W. The development of the wind tunnel balance measuring for tiny roll moment with gas bear-ing[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(1): 94–98. doi: 10.3969/j.issn.1672-9897.2002.01.015
    [3]
    赵俊波, 梁彬, 付增良, 等. 机动式再入弹头小滚转气动力风洞试验技术[J]. 空气动力学学报, 2016, 34(1): 53–58. doi: 10.7638/kqdlxxb-2015.0037

    ZHAO J B, LIANG B, FU Z L, et al. Experimental technique for micro rolling aerodynamics of a maneuvering reentry body[J]. Acta Aerodynamica Sinica, 2016, 34(1): 53–58. doi: 10.7638/kqdlxxb-2015.0037
    [4]
    白葵, 冯明溪, 付光明. 小不对称再入体滚转气动力测量技术[J]. 流体力学实验与测量, 2002, 16(3): 63–67, 72. doi: 10.3969/j.issn.1672-9897.2002.03.011

    BAI K, FENG M X, FU G M. Experimental technique for rolling aerodynamic of slight asymmetric re-entry body[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3): 63–67, 72. doi: 10.3969/j.issn.1672-9897.2002.03.011
    [5]
    杨英臣. 小滚转力矩测量技术研究[J]. 流体力学实验与测量, 1999, 13(1): 73–76. doi: 10.3969/j.issn.1672-9897.1999.01.012

    YANG Y C. Development of small rolling moment mea-surement technique[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1): 73–76. doi: 10.3969/j.issn.1672-9897.1999.01.012
    [6]
    于卫青, 方养田, 袁先士, 等. 动态实验微量滚转力矩天平测试技术研究[J]. 弹箭与制导学报, 2012, 32(5): 130–132, 136. doi: 10.15892/j.cnki.djzdxb.2012.05.049

    YU W Q, FANG Y T, YUAN X S, et al. The study of measurement techniques of microscale roll moment balance for dynamic test[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(5): 130–132, 136. doi: 10.15892/j.cnki.djzdxb.2012.05.049
    [7]
    刘高计, 于卫青, 王晨. 风洞试验微量滚转力矩测量试验技术[J]. 弹箭与制导学报, 2018, 38(4): 104–108. doi: 10.15892/j.cnki.djzdxb.2018.04.025

    LIU G J, YU W Q, WANG C. Measuring technique for micro rolling moment in wind tunnel tests[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 104–108. doi: 10.15892/j.cnki.djzdxb.2018.04.025
    [8]
    秦永明, 田晓虎, 董金刚. 无翼/舵布局导弹小载荷滚转力矩测量研究[J]. 弹道学报, 2014, 26(2): 48–51. doi: 10.3969/j.issn.1004-499X.2014.02.010

    QIN Y M, TIAN X H, DONG J G. Measurement study of small rolling moment on missile without wing/rudder[J]. Journal of Ballistics, 2014, 26(2): 48–51. doi: 10.3969/j.issn.1004-499X.2014.02.010
    [9]
    赵俊波, 梁彬, 付增良, 等. Φ1 m高超声速风洞小滚转力矩测量技术[J]. 空气动力学学报, 2020, 38(2): 260–267. doi: 10.7638/kqdlxxb-2018.0089

    ZHAO J B, LIANG B, FU Z L, et al. Measurement techni-que for micro rolling moments based on Φ1 m hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2020, 38(2): 260–267. doi: 10.7638/kqdlxxb-2018.0089
    [10]
    王玉花, 刘伟, 谢斌, 等. 复合式结构微量滚转力矩六分量天平研究[J]. 实验流体力学, 2015, 29(3): 76–79, 98. doi: 10.11729/syltlx20140087

    WANG Y H, LIU W, XIE B, et al. Research on a micro-rolling-moment six-component strain gauge balance of composite structure[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 76–79, 98. doi: 10.11729/syltlx20140087
    [11]
    贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001: 72–167.

    HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001: 72–167.
    [12]
    李绪国, 杨彦广, 李志辉, 等. 小尺寸应变天平设计方法研究[J]. 实验流体力学, 2013, 27(4): 78–82. doi: 10.3969/j.issn.1672-9897.2013.04.014

    LI X G, YANG Y G, LI Z H, et al. Design methods of the small size strain gauge balance[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 78–82. doi: 10.3969/j.issn.1672-9897.2013.04.014
    [13]
    王玉花, 孙良, 郑粤蓉. 高超声速风洞大轴向力中温天平的研制[J]. 实验流体力学, 2006, 20(1): 86–90. doi: 10.3969/j.issn.1672-9897.2006.01.020

    WANG Y H, SUN L, ZHENG Y R. The development of the larger axial force intermediate temperature balance in the hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 86–90. doi: 10.3969/j.issn.1672-9897.2006.01.020
    [14]
    于卫青, 解亚军, 刘高计, 等. 小量程滚转力矩天平设计[J]. 弹箭与制导学报, 2013, 33(6): 125–128, 132. doi: 10.15892/j.cnki.djzdxb.2013.06.039

    YU W Q, XIE Y J, LIU G J, et al. The design of a novel micro-scale roll moment balance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 125–128, 132. doi: 10.15892/j.cnki.djzdxb.2013.06.039
    [15]
    田雪峰. 机械密封金属波纹管的动态特性及疲劳特性对比分析[D]. 乌鲁木齐: 新疆大学, 2018: 25–37.

    TIAN X F. Comparison of dynamic characteristics and fatigue characteristics of mechanical sealed metal bellows[D]. Urumqi: Xinjiang University, 2018: 25–37.
    [16]
    钟玉平, 李杰, 闫廷来, 等. 基于有限元分析的波纹管强度应力提取与计算[J]. 材料开发与应用, 2018, 33(6): 101–105. doi: 10.19515/j.cnki.1003-1545.2018.06.017

    ZHONG Y P, LI J, YAN T L, et al. Calculation and extrac-tion of stress based on FEA for bellows[J]. Development and Application of Materials, 2018, 33(6): 101–105. doi: 10.19515/j.cnki.1003-1545.2018.06.017
    [17]
    叶梦思. 基于有限元分析的Ω形波纹管液压成形研究及波纹管轻量化设计[D]. 北京: 北京化工大学, 2018: 9–25.

    YE M S. Research on hydroforming of toroidal bellows and light-weight design of bellows based on finite element analy-sis[D]. Beijing: Beijing University of Chemical Technology, 2018: 9–25.
    [18]
    张小文, 闫廷来, 孙友贾. 有限元在波纹管稳定性分析中的应用[J]. 材料开发与应用, 2011, 26(4): 60–64. doi: 10.3969/j.issn.1003-1545.2011.04.014

    ZHANG X W, YAN T L, SUN Y J. Application of finite-element method in bellows stability analysis[J]. Development and Application of Materials, 2011, 26(4): 60–64. doi: 10.3969/j.issn.1003-1545.2011.04.014
    [19]
    王超, 林俊, 殷国富, 等. 天平与波纹管系统结构设计与有限元分析[J]. 实验流体力学, 2013, 27(3): 77–80, 92. doi: 10.3969/j.issn.1672-9897.2013.03.015

    WANG C, LIN J, YIN G F, et al. Structure design and finite element analysis on system of balance and bellows[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 77–80, 92. doi: 10.3969/j.issn.1672-9897.2013.03.015
    [20]
    中国人民解放军总装备部. 风洞应变天平规范: GJB 2244A—2011[S]. 北京: 总装备部军标出版发行部, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (375) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return