Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
LIANG D X, XUE C D, ZENG X, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184
Citation: LIANG D X, XUE C D, ZENG X, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184

Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel

doi: 10.11729/syltlx20210184
  • Received Date: 2021-12-14
  • Accepted Date: 2022-04-06
  • Rev Recd Date: 2022-03-24
  • Publish Date: 2023-04-25
  • Droplet microfluidic is an important branch of the microfluidic field and the biological fluids involved in it often have non-Newtonian properties. In order to understand the influence of non-Newtonian properties on droplet formation, four kinds of fluids with different rheological properties were configured to systematically study the non-Newtonian droplet formation in the dripping mode in a flow focusing microchannel. The results show that compared with Newtonian droplet formation, non-Newtonian droplet formation shows a more significant “beads-on-a-string” phenomenon. Different non-Newtonian properties have different effects on droplet formation. Shear thinning effect and elastic effect have opposite effects on the droplet size and formation frequency. The results of liquid column necking dynamics show that the process of liquid column necking is similar to that of Newtonian fluid due to a single shear thinning effect. The single elastic effect makes the capillary drive stage which appears of liquid column necking different from that of Newtonian fluid. The combined effect of the elastic effect and shear thinning effect leads to more significant capillary drive stage in the process of column necking and more significant “beads-on-a-string” after column necking.
  • loading
  • [1]
    KAMINSKI T S, SCHELER O, GARSTECKI P. Droplet microfluidics for microbiology: techniques, applications and challenges[J]. Lab on a Chip, 2016, 16(12): 2168–2187. doi: 10.1039/c6lc00367b
    [2]
    MAJUMDER S, WUBSHET N, LIU A P. Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells[J]. Journal of Micromechanics and Microengineering, 2019, 29(8): 083001. doi: 10.1088/1361-6439/ab2377
    [3]
    DING Y, HOWES P D, DEMELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132–149. doi: 10.1021/acs.analchem.9b05047
    [4]
    VECCHIOLLA D, GIRI V, BISWAL S L. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation[J]. Soft Matter, 2018, 14(46): 9312–9325. doi: 10.1039/c8sm01285g
    [5]
    YUAN D, ZHAO Q B, YAN S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551–567. doi: 10.1039/c7lc01076a
    [6]
    LIU Z M, YANG Y, DU Y, et al. Advances in droplet-based microfluidic technology and its applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282–296. doi: 10.1016/S1872-2040(17)60994-0
    [7]
    ZHU P G, WANG L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34–75. doi: 10.1039/c6lc01018k
    [8]
    VLADISAVLJEVIĆ G T, KOBAYASHI I, NAKAJIMA M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151–178. doi: 10.1007/s10404-012-0948-0
    [9]
    MAZUTIS L, BARET J C, GRIFFITHS A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion[J]. Lab on a Chip, 2009, 9(18): 2665–2672. doi: 10.1039/b903608c
    [10]
    DENG X K, REN Y K, HOU L K, et al. Compound-droplet-pairs-filled hydrogel microfiber for electric-field-induced selective release[J]. Small, 2019, 15(42): 1903098. doi: 10.1002/smll.201903098
    [11]
    李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012.

    LI Z H, WU J K, HU G Q. Fluid flow in microfluidic chips[M]. Beijing: Science Press, 2012.
    [12]
    陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 55–110.

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45(1): 55–110.
    [13]
    ROSTAMI B, MORINI G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191–200. doi: 10.1016/j.expthermflusci.2019.01.008
    [14]
    ROSTAMI B, MORINI G L. Micro droplets of non-Newtonian solutions in silicone oil flow through a hydrophobic micro cross-junction[J]. Journal of Physics: Conference Series, 2017, 923: 012021. doi: 10.1088/1742-6596/923/1/012021
    [15]
    FU T T, MA Y G, LI H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75–86. doi: 10.1016/j.ces.2015.12.031
    [16]
    刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063

    LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063
    [17]
    MOON S K, CHEONG I W, CHOI S W. Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 454: 84–88. doi: 10.1016/j.colsurfa.2014.04.006
    [18]
    TAN Y C, CRISTINI V, LEE A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350–356. doi: 10.1016/j.snb.2005.06.008
    [19]
    JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Science, 2005, 309(5736): 887–888. doi: 10.1126/science.1112615
    [20]
    FATEHIFAR M, REVELL A, JABBARI M. Non-Newtonian droplet generation in a cross-junction microfluidic channel[J]. Polymers, 2021, 13(12): 1915. doi: 10.3390/polym13121915
    [21]
    DU W, FU T T, DUAN Y F, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66–76. doi: 10.1016/j.ces.2017.10.019
    [22]
    HARVIE D J E, DAVIDSON M R, COOPER-WHITE J J, et al. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids[J]. International Journal of Multiphase Flow, 2007, 33(5): 545–556. doi: 10.1016/j.ijmultiphaseflow.2006.12.002
    [23]
    DU W, FU T T, ZHANG Q D, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196–5206. doi: 10.1002/aic.15834
    [24]
    ARRATIA P E, GOLLUB J P, DURIAN D J. Polymeric filament thinning and breakup in microchannels[J]. Physical Review E, 2008, 77(3): 036309. doi: 10.1103/physreve.77.036309
    [25]
    DERZSI L, KASPRZYK M, PLOG J P, et al. Flow focusing with viscoelastic liquids[J]. Physics of Fluids, 2013, 25(9): 092001. doi: 10.1063/1.4817995
    [26]
    REN Y, LIU Z, SHUM H C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem[J]. Lab on a Chip, 2015, 15(1): 121–134. doi: 10.1039/c4lc00798k
    [27]
    KIM D Y, SHIM T S, KIM J M. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel[J]. Korea-Australia Rheology Journal, 2017, 29(2): 147–153. doi: 10.1007/s13367-017-0016-0
    [28]
    SHI Y, TANG G H. Lattice boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056–1072. doi: 10.4208/cicp.2014.m333
    [29]
    XUE C D, SUN Z P, LI Y J, et al. Non-Newtonian droplet generation in a flow-focusing microchannel[C]//Proceedings of ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, Dalian, China. 2019. doi: 10.1115/MNHMT2019-4196
    [30]
    YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica Acta, 1981, 20(2): 163–178. doi:
    [31]
    LI D, XUAN X C. Fluid rheological effects on particle migration in a straight rectangular microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(4): 1–10. doi: 10.1007/s10404-018-2070-4
    [32]
    BHAT P P, APPATHURAI S, HARRIS M T, et al. Formation of beads-on-a-string structures during break-up of viscoelastic filaments[J]. Nature Physics, 2010, 6(8): 625–631. doi: 10.1038/nphys1682
    [33]
    OLIVEIRA M S N, MCKINLEY G H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[J]. Physics of Fluids, 2005, 17(7): 071704. doi: 10.1063/1.1949197
    [34]
    ZHOU C F, YUE P T, FENG J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids, 2006, 18(9): 092105. doi: 10.1063/1.2353116
    [35]
    XUE C D, CHEN X D, LI Y J, et al. Breakup dynamics of semi-dilute polymer solutions in a microfluidic flow-focusing device[J]. Micromachines, 2020, 11(4): 406. doi: 10.3390/mi11040406
    [36]
    ROUMPEA E, CHINAUD M, ANGELI P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599–3609. doi: 10.1002/aic.15704
    [37]
    HONG J S, COOPER-WHITE J. Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channe[J]. Korea-Australia Rheology Journal, 2009, 21(4): 269–280.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (229) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return