Turn off MathJax
Article Contents
CHEN A G, TIAN Y, WANG J, et al. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20210192
Citation: CHEN A G, TIAN Y, WANG J, et al. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20210192

Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field

doi: 10.11729/syltlx20210192
  • Received Date: 2021-12-22
  • Accepted Date: 2022-12-16
  • Rev Recd Date: 2022-12-14
  • Available Online: 2023-05-17
  • The inconsistency of rotational temperature and vibrational temperature in the rarefied flow field is a concrete manifestation of thermodynamic non-equilibrium. The non-intrusive measurement method of rotational temperature and vibrational temperature in the rarefied flow field can be measured by the Electron Beam Fluorescence (EBF) technique. The basic principle and measurement method of EBF were introduced in this paper. Experiment was carried out in the M12 and M16 conical nozzle of the Φ0.3m hypersonic low density wind tunnel. The rotational temperature maximum relative uncertainty is 0.26% and the vibrational temperature maximum relative uncertainty is 0.8% from the analysis of repetitive measurement results. The distribution of rotational temperature and vibrational temperature on the exit section of the M12 and M16 conical nozzle reflects the characteristics of expansion flow of the conical nozzle. The measurement results of three states of each nozzle show that with the increase of rareness, the larger the deviation between the vibrational temperature and the rotational temperature is, the more prominent the thermodynamic non-equilibrium phenomenon appears.
  • loading
  • [1]
    梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295–302. doi: 10.3969/j.issn.1674-5825.2015.03.014

    LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295–302. doi: 10.3969/j.issn.1674-5825.2015.03.014
    [2]
    赵娅, 袁军娅, 任翔. 微喷管中稀薄流动时热力学非平衡现象研究[J]. 火箭推进, 2020, 46(3): 19–25,40. doi: 10.3969/j.issn.1672-9374.2020.03.003

    ZHAO Y, YUAN J Y, REN X. Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle[J]. Journal of Rocket Propulsion, 2020, 46(3): 19–25,40. doi: 10.3969/j.issn.1672-9374.2020.03.003
    [3]
    沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.

    SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003.
    [4]
    吴其芬, 陈伟芳, 黄琳, 等. 稀薄气体动力学[M]. 长沙: 国防科技大学出版社, 2004.
    [5]
    瞿章华, 刘伟, 曾明, 等. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 2001.
    [6]
    BIRD G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976.
    [7]
    BIRD G A. 分子气动力学及气体流动的直接模拟[M]. 方明, 李志辉, 译. 北京: 科学出版社, 2019.
    [8]
    陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017.

    CHEN W F, ZHAO W W. Rarefied gas dynamic moment method and numerical simulation[M]. Beijing: Science Press, 2017.
    [9]
    LUTFY F M, MUNTZ E P. The pulsed electron beam fluorescence technique[R]. AIAA 2000-2487, 2000. doi: 10.2514/6.2000-2487
    [10]
    WILLIAMS W D, HORNKOHL J O, LEWIS J W L. Electron beam probe for a low density hypersonic wind tunnel[R]. AEDC-TR-71-61, 1971.
    [11]
    LEWIS J W L, WILLIAMS W D. Electron beam fluorescence diagnostics of a ternary gas mixture[R]. AEDC-TR-73-96, 1973.
    [12]
    HARBOUR P J, Lewis J H. Preliminary measurements of the hypersonic rarefied flow field on a sharp plate using electron beam probe[M]// BRUNDIN C L. Rarefied Gas Dynamics. America: Academic Press, 1967.
    [13]
    MOHAMED A K, POT T, CHANETZ B. Diagnostics by electron beam fluorescence in hypersonics[C]//Proc of the 16th International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519120
    [14]
    CATTOLICA R J. Electron-beam fluorescence measurements in hypersonic flows[C]// Proc of the Von Karman Institute for Fluid Dynamics Lecture Series. 1990.
    [15]
    GOCHBERG L A. The electron beam fluorescence technique in hypersonic aerothermodynamics[C]//Proc of the 25th Plasmadynamics and Lasers Conference. 1994. doi: 10.2514/6.1994-2635
    [16]
    MASLOV A A, MIRONOV S G. Electron-beam diagnostics of hypersonic flows[J]. 流体力学实验与测量, 1998, 12(4): 42–52.
    [17]
    MASLOV A A, MIRONOV S G, SHIPLYUK A N. An experimental electron beam study of perturbations in a hypersonic shock layer on a plate[C]//Proc of the 8th Int. Conf. on Methods of Aerophysical Research. 1996.
    [18]
    SUKHININ G I A. Spacial distribution of parameters of diagnostic electron beam[C]//Proc of the 6th Allunion Conf. on Rarefied Gas Dynamics. 1979.
    [19]
    叶希超. 电子束技术测量低密度风洞氮气流振动温度、转动温度及数密度[J]. 气动实验与测量控制, 1989, 3(1): 71–77.

    YE X C. Measurement of vibrational temperature, otationarl temperature and number density in nitrogen flows of low density wind tunnel using electron beam technique[J]. Journal of Experiments in Fluid Mechanics, 1989, 3(1): 71–77.
    [20]
    陈爱国, 王杰, 李中华, 等. 脉冲电子束荧光技术测量稀薄流场速度研究[J]. 气体物理, 2021, 6(5): 67–71. doi: 10.19527/j.cnki.2096-1642.0892

    CHEN A G, WANG J, LI Z H, et al. Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique[J]. Physics of Gases, 2021, 6(5): 67–71. doi: 10.19527/j.cnki.2096-1642.0892
    [21]
    MASLOV A A, MIRONOV S G, SAFRONOV Y A. Application of electron beam fluorescence to measure velocities in hypersonic wind tunnels[C]//Proc of the 6th Int. Conf. on Methods of Aerophysical Research. 1992.
    [22]
    MASLOV A A, MIRONOV S G, SAFRONOV Y A. Velocity measurements on a flat plate in the hypersonic flow by electron beam fluorescence method[C]//Proc of the 7th Int. Conf. on Methods of Aerophysical Research. 1994.
    [23]
    LUFTY F M, MUNTZ E P. Initial experimental study of pulsed electron beam fluorescence[J]. AIAA Journal, 1996, 34(3): 478–482. doi: 10.2514/3.13092
    [24]
    WILLIAMS W D, SHERROUSE P M, CROSSWY F L, et al. AEDC development of the pulsed electron beam fluorescence (PEBF) technique for hypersonic test facility applications[R]. AIAA-2002-5155, 2002.
    [25]
    MOHAMED A K. Electron beam velocimetry[M]//New Trends in Instrumentation for Hypersonic Research. Dordrecht: Springer Netherlands, 1993: 373-380. doi: 10.1007/978-94-011-1828-6_34
    [26]
    林贞彬, 朱进生, 郭大华. 电子束荧光技术用于测量高超声速飞行器流场密度[J]. 气动实验与测量控制, 1993, 7(4): 44–48.

    LIN Z B, ZHU J S, GUO D H. Measurement of density in hypersonic flow field by electron beam fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(4): 44–48.
    [27]
    陈爱国, 李震乾, 田颖, 等. 高超声速低密度流场参数测量方法[C]//中国空气动力学会测控专业委员会第六届六次全国学术交流会论文集. 2015

    CHEN A G, LI Z Q, TIAN Y, et al. Parameters measurement method of hypersonic low density flow field [C]//Proceedings of the 6th National Academic Exchange Conference of Measurement and Control Committee of Chinese Aerodynamic Society. 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(3)

    Article Metrics

    Article views (161) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return