Turn off MathJax
Article Contents
ZHU T,YANG K,ZHU X X,et al. Improvement, performance test and evaluation for Schmidt–Boelter gage[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220029
Citation: ZHU T,YANG K,ZHU X X,et al. Improvement, performance test and evaluation for Schmidt–Boelter gage[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220029

Improvement, performance test and evaluation for Schmidt–Boelter gage

doi: 10.11729/syltlx20220029
  • Received Date: 2022-04-08
  • Accepted Date: 2022-05-17
  • Rev Recd Date: 2022-05-09
  • Available Online: 2022-10-18
  • A kind of the small size Schmidt–Boelter gage was improved for measuring dynamic heat flux in the continuous variable attack angle test in the conventional hypersonic wind tunnel. The Schmidt–Boelter gage improved was statically calibrated and dynamically tested by the heat flux calibration devices. The test results show that the sensitivity coefficient is 57.67 μV·kW−1·m2, the response time is 27 ms, the cut-off frequency is 26 Hz and the gage range coverage is 1–130 kW/m2. Then the quantitative relation between the continuous variable attack angle velocity and the maximum test error was established based on the feature response time constant. And referring to the heat flux measured in the step variable attack angle test, the maximum velocity of the continuous variable attack angle supported by the gage was evaluated within a certain margin of error.
  • loading
  • [1]
    汪丰麟,朱启超,张杰. 俄罗斯高超声速武器发展简析[J]. 国防科技,2021,42(3):57-64. doi: 10.13943/j.issn1671-4547.2021.03.08

    WANG F L,ZHU Q C,ZHANG J. The development history of Russian hypersonic weapons[J]. National Defense Technology,2021,42(3):57-64. doi: 10.13943/j.issn1671-4547.2021.03.08
    [2]
    王培美,陈俊峰. 美军针对高超声速武器的反导预警能力发展态势分析[J]. 国防科技,2021,42(5):63-68. doi: 10.13943/j.issn1671-4547.2021.05.11

    WANG P M,CHEN J F. US missile defense early-warning capabilities and trends study in consideration of hypersonic weapons defense[J]. National Defense Technology,2021,42(5):63-68. doi: 10.13943/j.issn1671-4547.2021.05.11
    [3]
    梁捷,秦开宇,陈力. 类X-43A高超声速飞行器机体/推进一体化气动设计分析和地面试验问题评述[J]. 载人航天,2021,27(4):412-421. doi: 10.16329/j.cnki.zrht.2021.04.002

    LIANG J,QIN K Y,CHEN L. A review of aerodynamic design and ground test for integrated airframe/propulsion hypersonic vehicles like X-43A[J]. Manned Spaceflight,2021,27(4):412-421. doi: 10.16329/j.cnki.zrht.2021.04.002
    [4]
    王铁进,施岳定,邓志强,等. 常规高超声速风洞的节能方案研究[J]. 实验流体力学,2016,30(6):71-75,104. doi: 10.11729/syltlx20150133

    WANG T J,SHI Y D,DENG Z Q,et al. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2016,30(6):71-75,104. doi: 10.11729/syltlx20150133
    [5]
    陈磊,钟凯,朱涛,等. 高超声速风洞试验段环境飞行器颤振的视觉三维测量[J]. 光学 精密工程,2021,29(8):1811-1821. doi: 10.37188/OPE.2021.0169

    CHEN L,ZHONG K,ZHU T,et al. Visual three-dimensional measurement of aircraft flutter in hypersonic wind tunnel tests[J]. Optics and Precision Engineering,2021,29(8):1811-1821. doi: 10.37188/OPE.2021.0169
    [6]
    黄昊宇,黄辉,凌忠伟,等. 某式某型高超声速风洞连续变攻角测力试验测试系统研制及关键技术研究[J]. 自动化与仪器仪表,2021(2):33-37. doi: 10.14016/j.cnki.1001-9227.2021.02.033

    HUANG H Y,HUANG H,LING Z W,et al. Measurement system development and key techniques research on the continuous variable angle of attack force test in Ф0.5m hypersonic wind tunnel[J]. Automation & Instrumentation,2021(2):33-37. doi: 10.14016/j.cnki.1001-9227.2021.02.033
    [7]
    黄辉,黄昊宇,凌忠伟,等. Φ0.5米高超声速风洞连续变攻角测力试验数据处理方法研究[J]. 计算机测量与控制,2019,27(8):281-285. doi: 10.16526/j.cnki.11-4762/tp.2019.08.059

    HUANG H,HUANG H Y,LING Z W,et al. Research on data processing method of continuous variable angle of attack force test in Φ 0.5 meter hypersonic wind tunnel[J]. Computer Measurement & Control,2019,27(8):281-285. doi: 10.16526/j.cnki.11-4762/tp.2019.08.059
    [8]
    韩曙光,贾广森,文帅,等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006

    HAN S G,JIA G S,WEN S,et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006
    [9]
    毕志献,韩曙光,伍超华,等. 磷光热图测热技术研究[J]. 实验流体力学,2013,27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    BI Z X,HAN S G,WU C H,et al. Phosphor thermography study in Gun tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [10]
    张仕忠,李进平,张晓源,等. 一种新型瞬态量热计的研制[J]. 中国科学:技术科学,2018,48(5):558-564. doi: 10.1360/N092017-00245

    ZHANG S Z,LI J P,ZHANG X Y,et al. Development of a novel transient calorimeter[J]. Scientia Sinica(Technologica),2018,48(5):558-564. doi: 10.1360/N092017-00245
    [11]
    曾磊,桂业伟,贺立新,等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032

    ZENG L,GUI Y W,HE L X,et al. Study on data processing methods for coaxial-thermal-couple heat-flux sensor[J]. Journal of Engineering Thermophysics,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032
    [12]
    MATTHEWS R K, NUTT K W, WANNENWETSCH G D, et al. Developments in aerothermal test techniques at the AEDC supersonic-hypersonic wind tunnels[C]//Proc of the 20th Thermophysics Conference. 1985: 1003. doi: 10.2514/6.1985-1003
    [13]
    NAKOS J T. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia[R]. SAND2010-7062 , 2010. doi: 10.2172/1005030
    [14]
    KIDD C, SCOTT W. New techniques for transient heat-transfer measurement in hypersonic flow at the AEDC[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999: 823. doi: 10.2514/6.1999-823
    [15]
    KIDD C T, ADAMS J C Jr. Development of a heat-flux sensor for commonality of measurement in AEDC hypersonic wind tunnels[C]//Proc of the 21st Aerodynamic Measurement Technology and Ground Testing Conference. 2000: 2514. doi: 10.2514/6.2000-2514
    [16]
    HOFFIE A F. Convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow[D]. Virginia: Mechanical Engineering, Virginia Polytechnic Institute and State University, 2006.
    [17]
    VATELL CORPORATION. Certificate of calibration of Schmidt-Boelter heat flux transducer[Z]. Serial Number: 0118, Date Calibrated: 10-09-2013.
    [18]
    罗浩,彭同江. 一种多级式热电堆型微量热流传感器的设计与制备[J]. 西南科技大学学报,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012

    LUO H,PENG T J. Design and preparation of a multi-stage thermopile-type micro-heat flow flux sensor[J]. Journal of Southwest University of Science and Technology,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012
    [19]
    储小刚. 热电堆式热流传感器的设计与实验研究[D]. 南京: 南京理工大学, 2016.
    [20]
    朱新新,朱涛,杨凯,等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学,2021,35(4):106-111. doi: 10.11729/syltlx20200065

    ZHU X X,ZHU T,YANG K,et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics,2021,35(4):106-111. doi: 10.11729/syltlx20200065
    [21]
    MURTHY A V,TSAI B K,SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):293-305. doi: 10.6028/jres.105.033
    [22]
    朱新新,王辉,杨庆涛,等. 弧光灯热流标定系统的光学设计[J]. 光学学报,2016,36(11):234-240. doi: 10.3788/AOS201636.1122001

    ZHU X X,WANG H,YANG Q T,et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica,2016,36(11):234-240. doi: 10.3788/AOS201636.1122001
    [23]
    杨凯,杨庆涛,朱新新,等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11

    YANG K,YANG Q T,ZHU X X,et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11
    [24]
    WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034
    [25]
    王辉, 朱新新, 彭海波, 等. 一种高频响热流传感器标定装置: CN112556890A[P]. 2021-03-26.

    WANG H, ZHU X X, PENG H B, et al. Calibration device for high-frequency response heat flow sensor: CN112556890A[P]. 2021-03-26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (347) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return