Turn off MathJax
Article Contents
GAO Y, XU X X, ZHAO Z L, et al. Research progress of improving nanofluid fuel performance[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220119
Citation: GAO Y, XU X X, ZHAO Z L, et al. Research progress of improving nanofluid fuel performance[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220119

Research progress of improving nanofluid fuel performance

doi: 10.11729/syltlx20220119
  • Received Date: 2022-11-01
  • Accepted Date: 2023-02-27
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-04-23
  • Nanofluid fuel is a kind of suspension liquid, which is made by adding nanoparticles into the liquid fuel. It has advantages of high energy density and shorter ignition delay, and thus shows the potential of improving the burning characteristics of the fuels. To further improve the performance of nanofluid fuels and explore more effective performance control methods, the progress of research on nanofluid fuels in recent years at home and abroad is briefly reviewed in this work. Researches on the improvement of the stability performance, rheological performance, evaporation performance, ignition performance and combustion performance of nanofluid fuels are introduced, and the corresponding tailoring methods and mechanisms are analyzed. Adding surfactant and surface coating are effective methods to improve the stability of nanoparticles in the fuel. The methods of regulating ignition and combustion performance are based on improving the heat conduction and absorption capacity of droplets and promoting the heat release of metal particles, which mainly include nano-metal particles, nano-metal oxides, and new metastable intermixed composites. The existing problems in current research are summarized. More importantly, it is pointed out that the future study of nanofluid fuels should focus on broadening the boundary of the fuel, exploring new surfactants, and establishing the theoretical framework of ignition and combustion.
  • loading
  • [1]
    KIM D M, BAEK S W, YOON J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure[J]. Combustion and Flame, 2016, 173: 106–113. doi: 10.1016/j.combustflame.2016.07.033
    [2]
    WANG X R, ZHANG J, MA Y, et al. A comprehensive review on the properties of nanofluid fuel and its additive effects to compression ignition engines[J]. Applied Surface Science, 2020, 504: 144581. doi: 10.1016/j.apsusc.2019.144581
    [3]
    KIM D C, KIM J H, WOO J K, et al. A new iron-nanofluid as fuel additive for particulate matter reduction in heavy fuel oil-fired boiler facility[J]. Asian Journal of Chemistry, 2008, 20(7): 5767–5775.
    [4]
    E X-T-F, PAN L, WANG F, et al. Al-nanoparticle-containing nanofluid fuel: synthesis, stability, properties, and propulsion performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745. doi: 10.1021/acs.iecr.6b00043
    [5]
    LIU J Z, CHEN B H, WU T T, et al. Ignition and combustion characteristics and agglomerate evolution mechanism of aluminum in nAl/JP–10 nanofluid fuel[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(4): 1369–1379. doi: 10.1007/s10973-019-08039-5
    [6]
    CHENG Z P, CHU X Z, YIN J Z, et al. Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst: enhanced heat release and catalytic performance[J]. Chemical Engineering Journal, 2020, 385: 123859. doi: 10.1016/j.cej.2019.123859
    [7]
    EL-SEESY A I, HASSAN H, OOKAWARA S. Influence of adding multiwalled carbon nanotubes to waste cooking oil biodiesel on the performance and emission characteristics of a diesel engine: an experimental investigation[J]. International Journal of Green Energy, 2019, 16(12): 901–916. doi: 10.1080/15435075.2019.1642895
    [8]
    GUERIERI P M, DELISIO J B, ZACHARIAH M R. Nanoaluminum/Nitrocellulose microparticle additive for burn enhancement of liquid fuels[J]. Combustion and Flame, 2017, 176: 220–228. doi: 10.1016/j.combustflame.2016.10.011
    [9]
    SIM H S, PLASCENCIA M A, VARGAS A, et al. Effects of inert and energetic nanoparticles on burning liquid ethanol droplets[J]. Combustion Science and Technology, 2019, 191(7): 1079–1100. doi: 10.1080/00102202.2018.1509857
    [10]
    XU Z, LOU W J, ZHAO G Q, et al. Cu nanoparticles decorated WS2 nanosheets as a lubricant additive for enhanced tribological performance[J]. RSC Advances, 2019, 9(14): 7786–7794. doi: 10.1039/c9ra00337a
    [11]
    SOUDAGAR M E M, NIK-GHAZALI N-N, KALAM M A, et al. The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics[J]. Energy Conversion and Management, 2018, 178: 146–177. doi: 10.1016/j.enconman.2018.10.019
    [12]
    SUNDARAM D S, PURI P, YANG V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles[J]. Combustion and Flame, 2016, 169: 94–109. doi: 10.1016/j.combustflame.2016.04.005
    [13]
    李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5): 640–647. doi: 10.3969/j.issn.1000-1093.2014.05.010

    LI X, ZHAO F Q, HAO H X, et al. Research on ignition and combustion properties of different micro/nano-aluminum powders[J]. Acta Armamentarii, 2014, 35(5): 640–647. doi: 10.3969/j.issn.1000-1093.2014.05.010
    [14]
    SHIN Y J, SHEN Y H. Preparation of coal slurry with organic solvents[J]. Chemosphere, 2007, 68(2): 389–393. doi: 10.1016/j.chemosphere.2006.12.049
    [15]
    TANVIR S, QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power, 2015, 31(1): 408–415. doi: 10.2514/1.B35500
    [16]
    GUERIERI P M, JACOB R J, DeLISIO J B, et al. Stabilized microparticle aggregates of oxygen-containing nanoparticles in kerosene for enhanced droplet combustion[J]. Combustion and Flame, 2018, 187: 77–86. doi: 10.1016/j.combustflame.2017.08.026
    [17]
    GUERIERI P M, JACOB R J, WANG H Y, et al. Droplet combustion of kerosene augmented by stabilized nanoaluminum/oxidizer composite mesoparticles[J]. Combustion and Flame, 2020, 211: 1–7. doi: 10.1016/j.combustflame.2019.07.031
    [18]
    MEI D Q, SUN C, LI L C, et al. Evaporation characteristics of fuel sessile droplets with nanoparticles[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2019, 41(6): 677–688. doi: 10.1080/15567036.2018.1520350
    [19]
    CHEN B H, LIU J Z, YANG W J, et al. Effect of ammonium perchlorate coating on the ignition and combustion characteristics of Al/JP–10 nanofluid fuel[J]. Combustion Science and Technology, 2020, 192(8): 1567–1581. doi: 10.1080/00102202.2019.1613385
    [20]
    GAN Y N, QIAO L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures[J]. Energy & Fuels, 2012, 26(7): 4224–4230. doi: 10.1021/ef300493m
    [21]
    JAVED I, BAEK S W, WAHEED K, et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(12): 2955–2963. doi: 10.1016/j.combustflame.2013.07.007
    [22]
    JAVED I, BAEK S W, WAHEED K. Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures: the phenomenon of microexplosion[J]. Experimental Thermal and Fluid Science, 2014, 56: 33–44. doi: 10.1016/j.expthermflusci.2013.11.006
    [23]
    JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(3): 774–787. doi: 10.1016/j.combustflame.2014.08.018
    [24]
    SABOURIN J L, YETTER R A, PARIMI V S. Exploring the effects of nanostructured particles on liquid nitromethane combustion[J]. Journal of Propulsion and Power, 2010, 26(5): 1006–1015. doi: 10.2514/1.48579
    [25]
    McCOWN K W III, PETERSEN E L. Effects of nano-scale additives on the linear burning rate of nitromethane[J]. Combustion and Flame, 2014, 161(7): 1935–1943. doi: 10.1016/j.combustflame.2013.12.019
    [26]
    GAN Y N, QIAO L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24): 4913–4922. doi: 10.1016/j.ijheatmasstransfer.2011.07.003
    [27]
    GAN Y N, LIM Y S, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame, 2012, 159(4): 1732–1740. doi: 10.1016/j.combustflame.2011.12.008
    [28]
    PANDEY K, CHATTOPADHYAY K, BASU S. Combustion dynamics of low vapour pressure nanofuel droplets[J]. Physics of Fluids, 2017, 29(7): 074102. doi: 10.1063/1.4991752
    [29]
    PANDEY K, BASU S. How boiling happens in nanofuel droplets[J]. Physics of Fluids, 2018, 30(10): 107103. doi: 10.1063/1.5048564
    [30]
    TYAGI H, PHELAN P E, PRASHER R, et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters, 2008, 8(5): 1410–1416. doi: 10.1021/nl080277d
    [31]
    SHAMS Z, MOGHIMAN M. An experimental investigation of ignition probability of diesel fuel droplets with metal oxide nanoparticles[J]. Thermochimica Acta, 2017, 657: 79–85. doi: 10.1016/j.tca.2017.09.007
    [32]
    GAN Y N, QIAO L. Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22): 5777–5782. doi: 10.1016/j.ijheatmasstransfer.2012.05.074
    [33]
    MIGLANI A, BASU S. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet[J]. Journal of Heat Transfer, 2015, 137(10): 102001. doi: 10.1115/1.4030394
    [34]
    TANVIR S, JAIN S, QIAO L. Latent heat of vaporization of nanofluids: measurements and molecular dynamics simulations[J]. Journal of Applied Physics, 2015, 118(1): 014902. doi: 10.1063/1.4922967
    [35]
    JAVED I, BAEK S W, WAHEED K. Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(1): 170–183. doi: 10.1016/j.combustflame.2012.09.005
    [36]
    JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(1): 191–206. doi: 10.1016/j.combustflame.2014.07.015
    [37]
    E X-T-F, ZHI X M, ZHANG Y M, et al. Jet fuel containing ligand-protecting energetic nanoparticles: a case study of boron in JP–10[J]. Chemical Engineering Science, 2015, 129: 9–13. doi: 10.1016/j.ces.2015.02.018
    [38]
    SEKOAI P T, OUMA C N M, DU PREEZ S P, et al. Application of nanoparticles in biofuels: an overview[J]. Fuel, 2019, 237: 380–397. doi: 10.1016/j.fuel.2018.10.030
    [39]
    SAXENA V, KUMAR N, SAXENA V K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C. I. engine[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 563–588. doi: 10.1016/j.rser.2016.11.067
    [40]
    WANG C, ZHANG X, SU M. Synthesis and thermal stability of Field’s alloy nanoparticles and nanofluid[J]. Materials Letters, 2017, 205: 6–9. doi: 10.1016/j.matlet.2017.06.051
    [41]
    LI S J, DU H Z, ZHUO Z, et al. Dispersion stability, physical properties, and electrostatic breakup of surfactant-loaded aluminum/n-decane nanofluid fuel: nanoparticle size effect[J]. Energy & Fuels, 2020, 34(1): 1082–1092. doi: 10.1021/acs.energyfuels.9b03332
    [42]
    MEHTA R N, CHAKRABORTY M, PARIKH P A. Nanofuels: Combustion, engine performance and emissions[J]. Fuel, 2014, 120: 91–97. doi: 10.1016/j.fuel.2013.12.008
    [43]
    VAN DEVENER B, ANDERSON S L. Breakdown and combustion of JP–10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3[J]. Energy & Fuels, 2006, 20(5): 1886–1894. doi: 10.1021/ef060064g
    [44]
    GAN Y N, QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame, 2011, 158(2): 354–368. doi: 10.1016/j.combustflame.2010.09.005
    [45]
    SHARIATMADAR F S, PAKDEHI S G. Effect of various surfactants on the stability time of kerosene-boron nanofluids[J]. Micro & Nano Letters, 2016, 11(9): 498–502. doi: 10.1049/mnl.2016.0223
    [46]
    KANNAIYAN K, ANOOP K, SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology, 2017, 139(3): 032201. doi: 10.1115/1.4034858
    [47]
    HE Y R, JIN Y, CHEN H S, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2272–2281. doi: 10.1016/j.ijheatmasstransfer.2006.10.024
    [48]
    NGUYEN C T, DESGRANGES F, ROY G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1492–1506. doi: 10.1016/j.ijheatfluidflow.2007.02.004
    [49]
    NGUYEN C T, DESGRANGES F, GALANIS N, et al. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?[J]. International Journal of Thermal Sciences, 2008, 47(2): 103–111. doi: 10.1016/j.ijthermalsci.2007.01.033
    [50]
    ALAWI O A, SIDIK N A C. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants[J]. International Communications in Heat and Mass Transfer, 2014, 58: 125–131. doi: 10.1016/j.icheatmasstransfer.2014.08.033
    [51]
    CHEVALIER J, TILLEMENT O, AYELA F. Rheological properties of nanofluids flowing through microchannels[J]. Applied Physics Letters, 2007, 91(23): 233103. doi: 10.1063/1.2821117
    [52]
    ESFE M H, SAEDODIN S, WONGWISES S, et al. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 1817–1824. doi: 10.1007/s10973-014-4328-8
    [53]
    WANG J, HUANG X, QIAO X, et al. Experimental study on evaporation characteristics of single and multiple fuel droplets[J]. Journal of the Energy Institute, 2020, 93(4): 1473–1480. doi: 10.1016/j.joei.2020.01.009
    [54]
    SUH H K, LEE C S. Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine[J]. Fuel, 2008, 87(6): .925–932. doi: 10.1016/j.fuel.2007.05.051
    [55]
    WANG J G, WANG X R, CHEN H, et al. Experimental study on puffing and evaporation characteristics of jatropha straight vegetable oil (SVO) droplets[J]. International Journal of Heat and Mass Transfer, 2018, 119: 392–399. doi: 10.1016/j.ijheatmasstransfer.2017.11.130
    [56]
    SUNDARARAJ A J, PILLAI B C, GUNA K R. Experimental investigation of effect of temperature on ignition behaviour of seeded refined kerosene[J]. Thermochimica Acta, 2020, 683: 178469. doi: 10.1016/j.tca.2019.178469
    [57]
    HAN W K, DAI B X, LIU J Z, et al. Ignition and combustion characteristics of heptane-based nanofluid fuel droplets[J]. Energy & Fuels, 2019, 33(10): 10282–10289. doi: 10.1021/acs.energyfuels.9b02347
    [58]
    TANVIR S, QIAO L. Droplet burning rate enhancement of ethanol with the addition of graphite nanoparticles: influence of radiation absorption[J]. Combustion and Flame, 2016, 166: 34–44. doi: 10.1016/j.combustflame.2015.12.021
    [59]
    MEHREGAN M, MOGHIMAN M. Effect of aluminum nanoparticles on combustion characteristics and pollutants emission of liquid fuels A numerical study[J]. Fuel, 2014, 119: 57–61. doi: 10.1016/j.fuel.2013.11.016
    [60]
    GHAMARI M, RATNER A. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles[J]. Fuel, 2017, 188: 182–189. doi: 10.1016/j.fuel.2016.10.040
    [61]
    HOSEINI S S, NAJAFI G, GHOBADIAN B, et al. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends[J]. Renewable Energy, 2020, 145: 458–465. doi: 10.1016/j.renene.2019.06.006
    [62]
    RAMESH D K, DHANANJAYA KUMAR J L, HEMANTH KUMAR S G, et al. Study on effects of alumina nanoparticles as additive with poultry litter biodiesel on performance, combustion and emission characteristic of diesel engine[J]. Materials Today:Proceedings, 2018, 5(1): 1114–1120. doi: 10.1016/j.matpr.2017.11.190
    [63]
    SOUDAGAR M E M, NIK-GHAZALI N N, KALAM M A, et al. An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics[J]. Renewable Energy, 2020, 146: 2291–2307. doi: 10.1016/j.renene.2019.08.025
    [64]
    EL-SEESY A I, ABDEL-RAHMAN A K, BADY M, et al. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives[J]. Energy Conversion and Management, 2017, 135: 373–393. doi: 10.1016/j.enconman.2016.12.090
    [65]
    JAVED S, SATYANARAYANA MURTHY Y V V, SATYANARAYANA M R S, et al. Effect of a zinc oxide nanoparticle fuel additive on the emission reduction of a hydrogen dual-fuelled engine with jatropha methyl ester biodiesel blends[J]. Journal of Cleaner Production, 2016, 137: 490–506. doi: 10.1016/j.jclepro.2016.07.125
    [66]
    CHENG Y X, ZHAO Y, ZHAO F Q, et al. ReaxFF simulations on the combustion of Al and n–butanol nanofluid[J]. Fuel, 2022, 330: 125465. doi: 10.1016/j.fuel.2022.125465
    [67]
    WEI J J, HE C J, LV G, et al. The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol[J]. Energy, 2021, 230: 120734. doi: 10.1016/j.energy.2021.120734
    [68]
    YAN Q L, GOZIN M, ZHAO F Q, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8(9): 4799–4851. doi: 10.1039/c5nr07855e
    [69]
    HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization[J]. Advanced Materials, 2018, 30(41): 1706293. doi: 10.1002/adma.201706293
    [70]
    SUNDARAM D, YANG V, YETTER R A. Metal-based nanoenergetic materials: synthesis, properties, and applications[J]. Progress in Energy and Combustion Science, 2017, 61: 293–365. doi: 10.1016/j.pecs.2017.02.002
    [71]
    PATEL V K, SAURAV J R, GANGOPADHYAY K, et al. Combustion characterization and modeling of novel nanoenergetic composites of Co3O4/nAl[J]. RSC Advances, 2015, 5(28): 21471–21479. doi: 10.1039/C4RA14751K
    [72]
    YAN Q L, ZHAO F Q, KUO K K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions[J]. Progress in Energy and Combustion Science, 2016, 57: 75–136. doi: 10.1016/j.pecs.2016.08.002
    [73]
    WANG L L, MUNIR Z A, MAXIMOV Y M. Thermite reactions: their utilization in the synthesis and processing of materials[J]. Journal of Materials Science, 1993, 28(14): 3693–3708. doi: 10.1007/BF00353167
    [74]
    FOLEY T, PACHECO A, MALCHI J, et al. Development of nanothermite composites with variable electrostatic discharge ignition thresholds[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 431–434. doi: 10.1002/prep.200700273
    [75]
    HE W, LIU P J, GONG F Y, et al. Tuning the reactivity of metastable intermixed composite n–Al/PTFE by polydopamine interfacial control[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32849–32858. doi: 10.1021/acsami.8b10197
    [76]
    HE W, TAO B W, YANG Z J, et al. Mussel-inspired polydopamine-directed crystal growth of core-shell n–Al@PDA@CuO metastable intermixed composites[J]. Chemical Engineering Journal, 2019, 369: 1093–1101. doi: 10.1016/j.cej.2019.03.165
    [77]
    AO W, GAO Y, ZHOU S, et al. Enhancing the stability and combustion of a nanofluid fuel with polydopamine-coated aluminum nanoparticles[J]. Chemical Engineering Journal, 2021, 418: 129527. doi: 10.1016/j.cej.2021.129527
    [78]
    GAO Y, AO W, LI L K B, et al. Catalyzed combustion of a nanofluid fuel droplet containing polydopamine-coated metastable intermixed composite n–Al/CuO[J]. Aerospace Science and Technology, 2021, 118: 107005. doi: 10.1016/j.ast.2021.107005
    [79]
    CHEN W Q, ZHU B Z, SUN Y L, et al. Nano-sized copper oxide enhancing the combustion of aluminum/kerosene-based nanofluid fuel droplets[J]. Combustion and Flame, 2022, 240: 112028. doi: 10.1016/j.combustflame.2022.112028
    [80]
    HE W, AO W, YANG G C, et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases[J]. Chemical Engineering Journal, 2020, 381: 122623. doi: 10.1016/j.cej.2019.122623
    [81]
    PANDYA N S, SHAH H, MOLANA M, et al. Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review[J]. European Journal of Mechanics - B/Fluids, 2020, 81: 173–190. doi: 10.1016/j.euromechflu.2020.02.004
    [82]
    YANG D L, XIA Z X, HUANG L Y, et al. Synthesis of metallized kerosene gel and its characterization for propulsion applications[J]. Fuel, 2020, 262: 116684. doi: 10.1016/j.fuel.2019.116684
    [83]
    CHEN A Q, GUAN X D, LI X M, et al. Preparation and characterization of metalized JP–10 gel propellants with excellent thixotropic performance[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1007–1013. doi: 10.1002/prep.201700161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (199) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return