Turn off MathJax
Article Contents
LI B J, ZHANG S L, DONG X Y, et al. Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220132
Citation: LI B J, ZHANG S L, DONG X Y, et al. Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220132

Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint

doi: 10.11729/syltlx20220132
  • Received Date: 2022-11-16
  • Accepted Date: 2023-01-28
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-05-06
  • As a new non-contact temperature measurement method, temperature sensitive paint has the advantages of low cost and fast response. In this paper, a temperature measurement technology based on double layer temperature sensitive paint was used to study the heat transfer characteristics of sessile droplet evaporation. The temperature distributions at the contact surface between the droplet and the heating substrate and at the back of the substrate were obtained by measuring the temperature with a double-layer temperature sensitive paint. A one-dimensional unsteady inverse heat conduction model was established to obtain the heat flux distribution at the interface between the droplet and the heating substrate. The results show that the droplet vaporization process can be divided into three stages: initial heating stage, convection unit evaporation stage and film evaporation stage. In the initial heating stage, the heat flux increases rapidly. In the convection unit evaporation stage, the heat flux decreases gradually and remains basically unchanged. In the film evaporation stage, the heat flux first increases, and then decreases rapidly as the droplet almost completely evaporates. The reliability of the experimental method is verified by checking the heat quantity of droplet evaporation. The research results in this paper are helpful to broaden the experimental measurement method of heat flux during phase change heat transfer.
  • loading
  • [1]
    靳思宇, 李一兴, 翁史烈. 逆流式喷雾场中气液两相流温度测量装置[J]. 实验流体力学, 2008, 22(4): 63–67. doi: 10.3969/j.issn.1672-9897.2008.04.014

    JIN S Y, LI Y X, WENG S L. Device for temperature measurement in counter-current gas-liquid spraying field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 63–67. doi: 10.3969/j.issn.1672-9897.2008.04.014
    [2]
    董彬, 孙权, 高春艳, 等. 动力电池喷雾冷却换热特性研究[J]. 工程热物理学报, 2022, 43(6): 1588–1595.

    DONG B, SUN Q, GAO C Y, et al. Study on spray cooling heat transfer performance of power battery[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1588–1595.
    [3]
    XUE S D, XI X, LAN Z, et al. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121516. doi: 10.1016/j.ijheatmasstransfer.2021.121516
    [4]
    ZHENG L, CHENG X J, CAO L D, et al. Enhancing pesticide droplet deposition through O/W Pickering Emulsion: Synergistic stabilization by Flower-like ZnO particles and polymer emulsifier[J]. Chemical Engineering Journal, 2022, 434: 134761. doi: 10.1016/j.cej.2022.134761
    [5]
    SANTANGELO P E, ROMAGNOLI M, PUGLIA M. An experimental approach to evaluate drying kinetics and foam formation in inks for inkjet printing of fuel-cell layers[J]. Experimental Thermal and Fluid Science, 2022, 135: 110631. doi: 10.1016/j.expthermflusci.2022.110631
    [6]
    TOFAN T, JASEVIČIUS R. Modelling of the motion and interaction of a droplet of an inkjet printing process with physically treated polymers substrates[J]. Applied Sciences, 2021, 11(23): 11465. doi: 10.3390/app112311465
    [7]
    PAN Z H, WEIBEL J A, GARIMELLA S V. Transport mechanisms during water droplet evaporation on heated substrates of different wettability[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119524. doi: 10.1016/j.ijheatmasstransfer.2020.119524
    [8]
    TEMBELY M, VADILLO D C, DOLATABADI A, et al. A machine learning approach for predicting the maximum spreading factor of droplets upon impact on surfaces with various wettabilities[J]. Processes, 2022, 10(6): 1141. doi: 10.3390/pr10061141
    [9]
    WANG F, GAO X, XIAO Y C, et al. Thick exchange layer evaporation model with natural convection effect and evaporation experimental study for multicomponent droplet[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1903–1918. doi: 10.1016/j.cja.2020.02.005
    [10]
    HAN T, CHOI Y, NA U, et al. Fast nucleation of water by self-arrangement of hydrophilic crystals on a hierarchically structured surface promoting coalescence-induced droplet jumping[J]. Applied Thermal Engineering, 2021, 198: 117444. doi: 10.1016/j.applthermaleng.2021.117444
    [11]
    JIANG Y N, CHI F X, CHEN Q S, et al. Effect of substrate microstructure on thermocapillary flow and heat transfer of nanofluid droplet on heated wall[J]. Microgravity Science and Technology, 2021, 33(3): 37. doi: 10.1007/s12217-021-09888-2
    [12]
    LEE H J, CHOI C K, LEE S H. Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123206. doi: 10.1016/j.ijheatmasstransfer.2022.123206
    [13]
    GIBBONS M J, DI MARCO P, ROBINSON A J. Local heat transfer to an evaporating superhydrophobic droplet[J]. International Journal of Heat and Mass Transfer, 2018, 121: 641–652. doi: 10.1016/j.ijheatmasstransfer.2018.01.007
    [14]
    TAROZZI L, MUSCIO A, TARTARINI P. Experimental tests of dropwise cooling on infrared-transparent media[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 857–865. doi: 10.1016/j.expthermflusci.2006.09.005
    [15]
    RICHARDS C D, RICHARDS R F. Transient temperature measurements in a convectively cooled droplet[J]. Experiments in Fluids, 1998, 25(5): 392–400. doi: 10.1007/s003480050246
    [16]
    HASHIMI H A, KIM J. Quantum dot temperature sensor ab initio test: droplet vaporization heat transfer[C]// Proceedings of the ASME 2016 Heat Transfer Summer Conference. 2016.
    [17]
    LIU T S, SULLIVAN J P. Pressure and temperature sensitive paints[M]. Berlin: Springer, 2005.
    [18]
    Liu T S, CAMPBELL B T, SULLIVAN J P. Fluorescent paint for measurement of heat transfer in shock - turbulent boundary layer interaction[J]. Experimental Thermal and Fluid Science, 1995, 10(1): 101–112. doi: 10.1016/0894-1777(94)00068-J
    [19]
    LIU T S, CAMPBELL B T, BURNS S P, et al. Temperature- and pressure-sensitive luminescent paints in aerodynamics[J]. Applied Mechanics Reviews, 1997, 50(4): 227–246. doi: 10.1115/1.3101703
    [20]
    FRANCOM M, KIM J. Experimental investigation into the heat transfer mechanism of oscillating heat pipes using temperature sensitive paint[J]. Journal of Heat Transfer, 2021, 143(4): 041901. doi: 10.1115/1.4049512
    [21]
    HIRAI Y, MALLETTE A, NISHIO Y, et al. Visualization of icing of supercooled water using Tb(III)-based temperature-sensitive paint[J]. Sensors and Actuators A:Physical, 2019, 285: 599–602. doi: 10.1016/j.sna.2018.11.051
    [22]
    AL HASHIMI H, HAMMER C F, LEBON M T, et al. Phase-change heat transfer measurements using temperature-sensitive paints[J]. Journal of Heat Transfer, 2018, 140(3): 031601. doi: 10.1115/1.4038135
    [23]
    张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151

    ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151
    [24]
    刘旭, 彭迪, 刘应征. 温敏涂料TSP热流密度测量方法及应用[J]. 气体物理, 2020, 5(5): 1–12. doi: 10.19527/j.cnki.2096-1642.0872

    LIU X, PENG D, LIU Y Z. Methods and applications of heat flux measurement using TSP[J]. Physics of Gases, 2020, 5(5): 1–12. doi: 10.19527/j.cnki.2096-1642.0872
    [25]
    LIU L, ZHANG K Q, LIU H Y, et al. Experimental study on the interfacial heat transfer of sessile droplet evaporation using temperature-sensitive paint[J]. Experimental Thermal and Fluid Science, 2021, 128: 110436. doi: 10.1016/j.expthermflusci.2021.110436
    [26]
    张凯祺. 基于温敏漆的液滴撞击壁面蒸发过程传热特性研究[D]. 保定: 华北电力大学, 2021.

    ZHANG K Q. Study of interfacial heat transfer on droplet impacting heated surface evaporation using temperature sensitive paint[D]. Bao Ding: North China Electric Power University, 2021. doi: 10.27139/d.cnki.ghbdu.2021.000203.
    [27]
    LORENZ M, HORBACH T, SCHULZ A, et al. A novel measuring technique utilizing temperature sensitive paint—measurement procedure, validation, application, and comparison with infrared thermography[J]. Journal of Turbomachinery, 2013, 135(3): 031003. doi: 10.1115/1.4006638
    [28]
    MOAVENI S, KIM J. An inverse solution for reconstruction of the heat transfer coefficient from the knowledge of two temperature values in a solid substrate[J]. Inverse Problems in Science and Engineering, 2017, 25(1): 129–153. doi: 10.1080/17415977.2016.1161035
    [29]
    GIBBONS M J, DI MARCO P, ROBINSON A J. Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets[J]. International Journal of Heat and Mass Transfer, 2020, 148(C): 119093. doi: 10.1016/j.ijheatmasstransfer.2019.119093
    [30]
    GUGGILLA G, NARAYANASWAMY R, PATTAMATTA A. An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface[J]. Experimental Thermal and Fluid Science, 2020, 110: 109916. doi: 10.1016/j.expthermflusci.2019.109916
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (191) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return