Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
WANG X F, HU X, LI Z P, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140
Citation: WANG X F, HU X, LI Z P, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140

The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train

doi: 10.11729/syltlx20220140
  • Received Date: 2022-12-09
  • Accepted Date: 2023-02-17
  • Rev Recd Date: 2022-12-28
  • Available Online: 2023-03-27
  • Publish Date: 2023-06-25
  • The emergence of evacuated tube maglev transportation makes it possible for ground ultra-high-speed rail transit. However, limited by the demand for high-power propulsion motors and low vacuum environment, it is difficult to carry out experimental research. In this paper, the numerical research on the aerodynamic layout of the magnetic track and motor is carried out in the preliminary design of the Dynamic Model Test Platform for Multistate Coupled Rail Transit. Based on the geometric structure of the dynamic model test platform, considering the actual arrangement of the motor platform and the permanent magnet track in the tube, the three-dimensional, compressible RANS method and SST k–ω turbulence model are used to calculate the three-dimensional flow field structure and the shock wave reflection, propagation law of the superconducting maglev train in the low-pressure tube at ultra-high speed. The influence of the rectangular channel on the aerodynamic loads of the train and the flow field in the tube is compared and analyzed. The differences of the pressure and velocity change trend at the bottom of the train, and the shock wave strength at the tail and the wake structure are mainly explored. It is found that the step of the magnetic track and the motor can cause more flow separation and shock reflection in the wake region, resulting in tail pressure fluctuations. When the rectangular channel exists, the shock wave intensity at the tail of the train decreases, the shock wave phenomenon is more obvious, the aerodynamic drag coefficient decreases by 8.855%, and the aerodynamic lift coefficient increases by 14.312%. The research results can provide reference for the design of the magnetic track and motor platform of the multi-state coupling rail transit dynamic model test platform.
  • loading
  • [1]
    邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2]
    倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [3]
    胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J]. 实验流体力学, 2023, 37(1): 9–28.

    HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev trans-port[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 9–28.doi: 10.11729/syltlx20220084
    [4]
    ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34(6): 066103. doi: 10.1063/5.009097
    [5]
    YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367
    [6]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [7]
    黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [8]
    SUI Y, NIU J Q, RICCO P, et al. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow, 2021, 88: 108752. doi: 10.1016/j.ijheatfluidflow.2020.108752
    [9]
    LE T T G, KIM J H, JANG K S, et al. Numerical study on the influence of the nose and tail shape on the aerodynamic characteristics of a Hyperloop pod[J]. Aerospace Science and Technology, 2022, 121: 107362. doi: 10.1016/j.ast.2022.107362
    [10]
    BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020, 2(1): 1–18. doi: 10.1186/s42774-020-00053-8
    [11]
    NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [12]
    HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [13]
    JIA W G, WANG K, CHENG A P, et al. Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts[J]. Vacuum, 2018, 150: 58–68. doi: 10.1016/j.vacuum.2017.12.023
    [14]
    YANG Y, ZHANG H D, HONG Z D. Research on optimal design method for drag reduction of vacuum pipeline vehicle body[J]. International Journal of Computational Fluid Dynamics, 2019, 33(1-2): 77–86. doi: 10.1080/10618562.2019.1601711
    [15]
    DENG Z G, ZHANG W H, WANG L, et al. A high-speed running test platform for high-temperature superconducting maglev[J]. IEEE Transactions on Applied Superconduc-tivity, 2022, 32(4): 1–5. doi: 10.1109/TASC.2022.3143474
    [16]
    胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通气动特性的尺度效应[J/OL]. 西南交通大学学报. https://kns.cnki.net/kcms/detail/51.1277.u.20220826.1708.018.html. doi: 10.3969/j.issn.0258-2724.20220010.

    HU X, MA T H, WANG X F, et al. Scale effect of aerodynamic characteristics in evacuated tube maglev transport[J/OL]. [2022-12-06]. Journal of Southwest Jiaotong University. https://kns.cnki.net/kcms/detail/51.1277.u.20220826.1708.018.html. doi: 10.3969/j.issn.0258-2724.20220010
    [17]
    BI H Q, WANG Z H, WANG H L, et al. Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube[J]. Physics of Fluids, 2022, 34(9): 096111. doi: 10.1063/5.0104819
    [18]
    宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [19]
    MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decompo-sition[J]. Computers & Fluids, 2012, 57: 87–97. doi: 10.1016/j.compfluid.2011.12.012
    [20]
    ZHONG S, QIAN B S, YANG M Z, et al. Investigation on flow field structure and aerodynamic load in vacuum tube transportation system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215: 104681. doi: 10.1016/j.jweia.2021.104681
    [21]
    LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1–12. doi: 10.1186/s10033-019-0402-2
    [22]
    GAO G J, LI F, HE K, et al. Investigation of bogie positions on the aerodynamic drag and near wake structure of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 185: 41–53. doi: 10.1016/j.jweia.2018.10.012
    [23]
    梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h–1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [24]
    WANG S B, BURTON D, HERBST A H, et al. The effect of the ground condition on high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 230–243. doi: 10.1016/j.jweia.2017.11.009
    [25]
    ZHANG J, ADAMU A, SU X C, et al. Effect of simplifying bogie regions on aerodynamic performance of high-speed train[J]. Journal of Central South University, 2022, 29(5): 1717–1734. doi: 10.1007/s11771-022-4948-2
    [26]
    SCHMITT V. Pressure distributions on the ONERA M6- wing at transonic Mach numbers, experimental data base for computer program assessment[J]. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR-138, 1979.
    [27]
    MANI M, LADD J, CAIN A, et al. An assessment of one- and two-equation turbulence models for internal and external flows[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-2010
    [28]
    张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [29]
    胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerody-namica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [30]
    LI T, SONG J Y, ZHANG X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8261–8271. doi: 10.1177/09544062221087826
    [31]
    孟石, 周丹, 孟爽. 轨道间隙对磁浮列车气动性能的影响[J]. 中南大学学报(自然科学版), 2020, 51(12): 3537–3545. doi: 10.11817/j.issn.1672-7207.2020.12.027

    MENG S, ZHOU D, MENG S. Effect of rail gap on aerodynamic performance of maglev train[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3537–3545. doi: 10.11817/j.issn.1672-7207.2020.12.027
    [32]
    HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
    [33]
    丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228

    DING S S, YAO S B, CHEN D W. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engi-neering, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228
    [34]
    DONG T Y, MINELLI G, WANG J B, et al. The effect of ground clearance on the aerodynamics of a generic high-speed train[J]. Journal of Fluids and Structures, 2020, 95: 102990. doi: 10.1016/j.jfluidstructs.2020.102990
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (265) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return