Volume 37 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
KOU J, FU C, GAO X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143
Citation: KOU J, FU C, GAO X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49 doi: 10.11729/syltlx20220143

Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology

doi: 10.11729/syltlx20220143
  • Received Date: 2022-12-12
  • Accepted Date: 2023-03-06
  • Rev Recd Date: 2023-01-05
  • Available Online: 2023-04-23
  • Publish Date: 2023-06-25
  • Theoretically, the speed of vacuum pipe trains can exceed 1000 km/h by using the magnetic suspended technology in a low-pressure operating environment of pumped vacuums within the tubes. The closed pipe creates a complex aerodynamic environment, while the suspension of the train makes it very susceptible to changes in the attitude of the train. The fluid-solid coupling effects of the train are evident which require targeted research. In order to explore the theory and analysis method of fluid-solid coupling of the vacuum pipeline train, a relatively complete review of the progress in aerodynamic studies of the vacuum pipe train and the study of the fluid-solid coupling characteristics of the railway trains is made. And the key technology of fluid-solid coupling of the vacuum pipeline train is analyzed. It is proposed that the vacuum pipe train fluid-solid coupling study should focus on the development of the vacuum pipe train flow analysis techniques, the vacuum pipe train fluid-solid coupling analysis techniques and the vacuum pipe train control technology. This paper provides reference for vacuum pipe train fluid-solid coupling techniques to facilitate the development of the vacuum pipe train technology.
  • loading
  • [1]
    熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [2]
    沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094

    SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094
    [3]
    沈志云. 高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报, 2001, 1(1): 1–6. doi: 10.3321/j.issn:1671-1637.2001.01.001

    SHEN Z Y. Dynamic interaction of high speed maglev train on girders and its comparison with the case in ordinary high speed railways[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 1–6. doi: 10.3321/j.issn:1671-1637.2001.01.001
    [4]
    苏靖棋. 超级高铁(Hyperloop)可行性分析[J]. 现代城市轨道交通, 2020(5): 114–118.
    [5]
    PLAVEC M, MICHELBERGER F. Eine analyse des hyperloop-konzepts[J]. Der Eisenbahn Ingenieur, 2020(11): 52–55.
    [6]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [7]
    邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [8]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/jme.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/jme.2020.02.086
    [9]
    ZHOU P, ZHANG J Y, et al. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 109142. doi: 10.1016/j.vacuum.2019.109142
    [10]
    周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报, 2008, 28(6): 535–538. doi: 10.13922/j.cnki.cjovst.2008.06.011

    ZHOU X, ZHANG D Y, ZHANG Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 535–538. doi: 10.13922/j.cnki.cjovst.2008.06.011
    [11]
    KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [12]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
    [13]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03

    LIU J L, ZHANG J Y, ZHANG W H. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03
    [14]
    王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.

    WANG B. Study on aerodynamic characteristics of evacuated tube transport-high temperature superconducting maglev[D]. Chengdu: Southwest Jiaotong University, 2017.
    [15]
    黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [16]
    王志飞, 那日苏, 李樊, 等. 低真空管道磁浮系统结构参数优化理论研究[J]. 真空科学与技术学报, 2020, 40(1): 27–32. doi: 10.13922/j.cnki.cjovst.2020.01.06

    WANG Z F, NA R S, LI F, et al. Design optimization of vacuum tube maglev transport conditions: a theoretical and orthogonal experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(1): 27–32. doi: 10.13922/j.cnki.cjovst.2020.01.06
    [17]
    冯瑞龙, 王志飞, 冯海全, 等. 基于RBF和BP神经网络的低真空管道高速列车气动阻力预测对比研究[J]. 真空科学与技术学报, 2020, 40(9): 827–832. doi: 10.13922/j.cnki.cjovst.2020.09.05

    FENG R L, WANG Z F, FENG H Q, et al. Aerodynamic resistance of train running in vacuum tube: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(9): 827–832. doi: 10.13922/j.cnki.cjovst.2020.09.05
    [18]
    陈绪勇. 真空管道磁悬浮列车空气动力学问题仿真分析[D]. 成都: 西南交通大学, 2013.

    CHEN X Y. Aerodynamic simulation analysis of evacuated tube maglev trains[D]. Chengdu: Southwest Jiaotong University, 2013.
    [19]
    CHEN X Y, ZHAO L F, MA J Q, et al. Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs[J]. Journal of Modern Transportation, 2012, 20(2): 115–120. doi: 10.1007/BF03325788
    [20]
    ZHANG X H, JIANG Y, LI T. Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 67–76. doi: 10.32604/fdmp.2020.07776
    [21]
    PANDEY B K, MUKHERJEA S K. Aerodynamic simulation of evacuated tube transport trains with suction at tail[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. 2015. doi: 10.1115/IMECE2014-37904
    [22]
    YANG Y, WANG H Y, BENEDICT M, et al. Aerodynamic simulation of high-speed capsule in the hyperloop system[C]//Proc of the 35th AIAA Applied Aerodynamics Conference. 2017: 3741. doi: 10.2514/6.2017-3741
    [23]
    ZHANG Y P. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation[J]. Journal of Modern Transportation, 2012, 20(1): 44–48. doi: 10.1007/BF03325776
    [24]
    BI H Q, LEI B. Aerodynamic characteristics of evacuated tube high-speed train[C]//Proc of the International Conference on Transportation Engineering 2009, Southwest Jiaotong University. 2009: 3736-3741. doi: 10.1061/41039(345)616
    [25]
    MA J Q, ZHOU D J, ZHAO L F, et al. The approach to calculate the aerodynamic drag of maglev train in the evacuated tube[J]. Journal of Modern Transportation, 2013, 21(3): 200–208. doi: 10.1007/s40534-013-0019-6
    [26]
    MOSSI M, SIBILLA S. Swissmetro: aerodynamic drag and wave effects in tunnels under partial vacuum[C]// Proceedings of the 17th International Conference on Magnetically Levitated Systems and Linear Drives. 2002: 156-163.
    [27]
    MOSSI M, ROSSEL P. Swissmetro: A revolution in the high-speed passenger transport systems[C]//Proc of the 1st Swiss Transport Research Conference. 2001: 1-16.
    [28]
    LLUESMA-RODRÍGUEZ F, GONZÁLEZ T, HOYAS S. CFD simulation of a hyperloop capsule inside a closed environment[J]. Results in Engineering, 2021, 9: 100196. doi: 10.1016/j.rineng.2020.100196
    [29]
    JANG K S, LE T T G, KIM J H. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system[J]. Aerospace Science and Technology, 2021, 117: 106970. doi: 10.1016/j.ast.2021.106970
    [30]
    张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [31]
    OH J S, KANG T H, HAM S K, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies, 2019, 12(3): 518. doi: 10.3390/en12030518
    [32]
    GILLANI S A, PANIKULAM V P, SADASIVAN S, et al. CFD analysis of aerodynamic drag effects on vacuum tube trains[J]. Journal of Applied Fluid Mechanics, 2019, 12(1): 303–309. doi: 10.29252/jafm.75.253.29091
    [33]
    KANG H M, JIN Y M, KWON H B, et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences, 2017, 18(4): 614–622. doi: 10.5139/ijass.2017.18.4.614
    [34]
    ZHOU P, ZHANG J Y, LI T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train[J]. International Journal of Rail Transportation, 2020, 8(1): 27–44. doi: 10.1080/23248378.2019.1675191
    [35]
    BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020(1): 579–596. doi: 10.1186/s42774-020-00053-8
    [36]
    ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61–70. doi: 10.1016/j.jweia.2019.04.003
    [37]
    NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100–111. doi: 10.1016/j.jweia.2019.04.001
    [38]
    SUI Y, NIU J Q, YUAN Y P, et al. An aerothermal study of influence of blockage ratio on a supersonic tube train system[J]. Journal of Thermal Science, 2022, 31(2): 529–540. doi: 10.1007/s11630-020-1281-7
    [39]
    NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [40]
    于梦阁, 张继业, 张卫华. 随机风作用下高速列车的非定常气动载荷[J]. 机械工程学报, 2012, 48(20): 116–123. doi: 10.3901/JME.2012.20.113

    YU M G, ZHANG J Y, ZHANG W H. Unsteady aerodynamic loads of high-speed trains under stochastic winds[J]. Journal of Mechanical Engineering, 2012, 48(20): 116–123. doi: 10.3901/JME.2012.20.113
    [41]
    于梦阁, 张继业, 张卫华. 桥梁上高速列车的强横风运行安全性[J]. 机械工程学报, 2012, 48(18): 104–111. doi: 10.3901/JME.2012.18.104

    YU M G, ZHANG J Y, ZHANG W H. Running safety of high-speed trains on bridges under strong crosswinds[J]. Journal of Mechanical Engineering, 2012, 48(18): 104–111. doi: 10.3901/JME.2012.18.104
    [42]
    BETTLE J, HOLLOWAY A G L, VENART J E S. A computational study of the aerodynamic forces acting on a tractor-trailer vehicle on a bridge in cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(5): 573–592. doi: 10.1016/S0167-6105(02)00461-0
    [43]
    王永冠, 陈康. 横风对高速动车曲线通过性能的影响[J]. 西南交通大学学报, 2005, 40(2): 224–227. doi: 10.3969/j.issn.0258-2724.2005.02.019

    WANG Y G, CHEN K. Effects of crosswinds on curve negotiation of high-speed power cars[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 224–227. doi: 10.3969/j.issn.0258-2724.2005.02.019
    [44]
    BAKER C J, HEMIDA H, IWNICKI S, et al. Integration of crosswind forces into train dynamic modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2011, 225(2): 154–164. doi: 10.1177/2041301710392476
    [45]
    THOMAS D, DIEDRICHS B, BERG M, et al. Dynamics of a high-speed rail vehicle negotiating curves at unsteady crosswind[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2010, 224(6): 567–579. doi: 10.1243/09544097jrrt335
    [46]
    李田, 张继业, 张卫华. 横风下车辆–轨道耦合动力学性能[J]. 交通运输工程学报, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009

    LI T, ZHANG J Y, ZHANG W H. Coupling dynamics performance of vehicle-track under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009
    [47]
    杨吉忠, 毕海权, 翟婉明. 基于ALE方法的列车横风绕流动力学分析[J]. 铁道学报, 2009, 31(2): 120–124. doi: 10.3969/j.issn.1001-8360.2009.02.022

    YANG J Z, BI H Q, ZHAI W M. Dynamic analysis of train in cross-winds with the arbitrary Lagrangian-eulerian method[J]. Journal of the China Railway Society, 2009, 31(2): 120–124. doi: 10.3969/j.issn.1001-8360.2009.02.022
    [48]
    崔涛, 张卫华, 孙帮成. 高速列车流固耦合振动的研究方法及其应用[J]. 铁道学报, 2013, 35(4): 16–22. doi: 10.3969/j.issn.1001-8360.2013.04.003

    CUI T, ZHANG W H, SUN B C. Research method and application of fluid-solid coupling vibration for high-speed train[J]. Journal of the China Railway Society, 2013, 35(4): 16–22. doi: 10.3969/j.issn.1001-8360.2013.04.003
    [49]
    LI T, ZHANG J Y, ZHANG W H. An improved algorithm for fluid-structure interaction of high-speed trains under crosswind[J]. Journal of Modern Transportation, 2011, 19(2): 75–81. doi: 10.1007/BF03325743
    [50]
    李田, 张继业, 张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报, 2012, 25(2): 138–145. doi: 10.16385/j.cnki.issn.1004-4523.2012.02.015

    LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction dynamics in crosswinds[J]. Journal of Vibration Engineering, 2012, 25(2): 138–145. doi: 10.16385/j.cnki.issn.1004-4523.2012.02.015
    [51]
    李田, 张继业, 李忠继, 等. 基于Fluent与Simpack的高速列车流固耦合联合仿真[J]. 计算力学学报, 2012, 29(5): 675–680. doi: 10.7511/jslx20125006

    LI T, ZHANG J Y, LI Z J, et al. Co-simulation on fluid-structure interaction of high-speed train based on Fluent and Simpack[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 675–680. doi: 10.7511/jslx20125006
    [52]
    LI T, ZHANG X H, JIANG Y, et al. Aerodynamic design of a subsonic evacuated tube train system[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 121–130. doi: 10.32604/fdmp.2020.07976
    [53]
    李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学, 2012.

    LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu: Southwest Jiaotong University, 2012.
    [54]
    李田, 张继业, 张卫华. 高速列车流固耦合的平衡状态方法[J]. 机械工程学报, 2013, 49(2): 95–101. doi: 10.3901/JME.2013.02.095

    LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction based on the equilibrium state[J]. Journal of Mechanical Engineering, 2013, 49(2): 95–101. doi: 10.3901/JME.2013.02.095
    [55]
    崔涛. 高速列车流固耦合振动及运行安全性研究[D]. 成都: 西南交通大学, 2011.

    CUI T. Study on fluid-solid coupling vibration and running safety of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2011.
    [56]
    崔涛, 张卫华, 张曙光, 等. 列车高速通过站台时的流固耦合振动研究[J]. 中国铁道科学, 2010, 31(2): 50–55.

    CUI T, ZHANG W H, ZHANG S G, et al. Study on the fluid-solid coupling vibration of train passing through platform at high speed[J]. China Railway Science, 2010, 31(2): 50–55.
    [57]
    崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究的新方法[J]. 振动与冲击, 2011, 30(10): 143–146, 152. doi: 10.13465/j.cnki.jvs.2011.10.033

    CUI T, ZHANG W H. A new studying method for safety of a train with attitude changing in side wind[J]. Journal of Vibration and Shock, 2011, 30(10): 143–146, 152. doi: 10.13465/j.cnki.jvs.2011.10.033
    [58]
    崔涛, 张卫华. 高速列车侧风安全域计算方法[J]. 交通运输工程学报, 2011, 11(5): 42–48. doi: 10.19818/j.cnki.1671-1637.2011.05.007

    CUI T, ZHANG W H. Calculation method of cross wind security domain for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 42–48. doi: 10.19818/j.cnki.1671-1637.2011.05.007
    [59]
    崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究[J]. 铁道学报, 2010, 32(5): 25–29. doi: 10.3969/j.issn.1001-8360.2010.05.005

    CUI T, ZHANG W H. Study on safety of train in side wind with changing attitudes[J]. Journal of the China Railway Society, 2010, 32(5): 25–29. doi: 10.3969/j.issn.1001-8360.2010.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (267) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return