Turn off MathJax
Article Contents
ZHU X X, YANG Y J, WANG H, et al. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230044
Citation: ZHU X X, YANG Y J, WANG H, et al. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230044

Development and experimental analysis of circular foil pressure-heat flux gage

doi: 10.11729/syltlx20230044
  • Received Date: 2023-03-13
  • Accepted Date: 2023-06-15
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-08-31
  • Based on the demand of heat flux measurement in the continuous test of vehicle changing orbit, the circular foil pressure-heat flux gage that also can get pressure is developed on the basis of the traditional Gardon gage. The thermal radiation calibration test, the different plate comparison tests in the arc-heated wind tunnel, and numerical calculation analysis are carried out. The results show that the new circular foil pressure-heat flux gage can simultaneously get heat flux and pressure at the same point of the plate model in the multistate continuous arc-heated wind tunnel test. Repeatability accuracy of heat flux and pressure measurement are about 3.6% and 1.9% respectively. Compared with the slug calorimeter, the heat flux value measured by the circular foil pressure-heat flux gage is lower than 14.7%. There are two main reasons for the discrepancy. On one hand, the gage sensitivity coefficient decreases in the convective measurement environment; on the other hand, the incident heat flux of the gage decreases because the temperature of the constantan foil is relatively high so that a local hot spot is formed. Finally, some suggestions for the use of the new circular foil pressure-heat flux gage and traditional Gardon gage are given.
  • loading
  • [1]
    CECERE A, SAVINO R, ALLOUIS C, et al. Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions[J]. International Journal of Heat and Mass Transfer, 2015, 91: 747–755. doi: 10.1016/j.ijheatmasstransfer.2015.08.029
    [2]
    罗跃, 周玮, 杨鸿, 等. 电弧加热器湍流平板试验流场计算分析[J]. 实验流体力学, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088

    LUO Y, ZHOU W, YANG H, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088
    [3]
    周凯, 欧东斌, 张仕忠, 等. 热流传感器传热特性电弧风洞实验及数值模拟[J]. 气体物理, 2022, 7(4): 83–90. doi: 10.19527/j.cnki.2096-1642.0945

    ZHOU K, OU D B, ZHANG S Z, et al. Experimental and numerical simulation of heat transfer characteristics for heat flux sensors in arc heated wind tunnels[J]. Physics of Gases, 2022, 7(4): 83–90. doi: 10.19527/j.cnki.2096-1642.0945
    [4]
    ZHOU W X, WANG D, BAO W, et al. Experimental method study on heat flux measurement on sharp leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(11): 2055–2065. doi: 10.1177/0954410013513567
    [5]
    杨鸿, 罗跃, 吴东, 等. 电弧加热器超声速湍流平板烧蚀流场变化研究[J]. 实验流体力学, 2018, 32(4): 72–77. doi: 10.11729/syltlx20170181

    YANG H, LUO Y, WU D, et al. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72–77. doi: 10.11729/syltlx20170181
    [6]
    NAWAZ A, SANTOS J A. Assessing calorimeter evaluation methods in convective and radiative heat flux Environment[C]// Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4905
    [7]
    NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Proc of the 43rd AIAA Thermophysics Conference. 2012. doi: 10.2514/6.2012-3186
    [8]
    朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071

    ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071
    [9]
    陈德江, 王国林, 曲杨, 等. 气动热试验中稳态热流测量技术研究[J]. 实验流体力学, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015

    CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015
    [10]
    朱新新, 李泽禹, 赵文峰, 等. 水卡量热计的流热耦合模拟研究及试验分析[J]. 实验流体力学, 2022, 36(6): 83–88. doi: 10.11729/syltlx20210011

    ZHU X X, LI Z Y, ZHAO W F, et al. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83–88. doi: 10.11729/syltlx20210011
    [11]
    王辉, 杨凯, 杨庆涛, 等. 一种基于非稳态传热模型的新型热流传感器: CN108871599A[P]. 2018-11-23.

    WANG H, YANG K, YANG Q T, et al. Novel heat flux sensor based on unsteady state heat transfer model: CN108871599A[P]. 2018-11-23.
    [12]
    GARDON R. An instrument for the direct measurement of intense thermal radiation[J]. Review of Scientific Instruments, 1953, 24(5): 366–370. doi: 10.1063/1.1770712
    [13]
    STATHOPOULOS P, HOFMANN F, ROTHENFLUH T, et al. Calibration of a Gardon sensor in a high-temperature high heat flux stagnation facility[J]. Experimental Heat Transfer, 2012, 25(3): 222–237. doi: 10.1080/08916152.2011.609631
    [14]
    FU T R, ZONG A Z, ZHANG Y R, et al. A method to measure heat flux in convection using Gardon gauge[J]. Applied Thermal Engineering, 2016, 108: 1357–1361. doi: 10.1016/j.applthermaleng.2016.07.164
    [15]
    PURPURA C, TRIFONI E, PETRELLA O, et al. Gardon gauge heat flux sensor verification by new working facility[J]. Measurement, 2019, 134: 245–252. doi: 10.1016/j.measurement.2018.10.076
    [16]
    罗跃, 杨凯, 黄伟, 等. 用于高温高压剪切流场的Gardon计研制[J]. 科学技术与工程, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020

    LUO Y, YANG K, HUANG W, et al. Design and fabrication of Gardon gage used in shear flow filed of high temperature/pressure[J]. Science Technology and Engineering, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020
    [17]
    朱新新, 王辉, 彭海波, 等. 一种高辐照度热流传感器标定装置: CN213422482U[P]. 2021-06-11.

    ZHU X X, WANG H, PENG H B, et al. Calibration device for high-irradiance heat flow sensor: CN213422482U[P]. 2021-06-11.
    [18]
    MURTHY A V, TSAI B K, SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2): 293–305. doi: 10.6028/jres.105.033
    [19]
    朱新新, 王辉, 杨庆涛, 等. 弧光灯热流标定系统的光学设计[J]. 光学学报, 2016, 36(11): 1122001. doi: 10.3788/AOS201636.1122001

    ZHU X X, WANG H, YANG Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica, 2016, 36(11): 1122001. doi: 10.3788/AOS201636.1122001
    [20]
    ASTM Committees. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM E637-22[S]. West Conshohocken, PA, United States: ASTM International, 2022. doi: 10.1520/E0637-22
    [21]
    朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11. doi: 10.11823∕j.issn.1674-5795.2018.05.02

    ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11. doi: 10.11823∕j.issn.1674-5795.2018.05.02
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (121) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return